Integral Exercise 35

We are asked to evaluate the following integral:

$$ \int \frac{e^{x+1}}{3+e^x} \ dx $$

First, observe that \( e^{x+1} = e^x \cdot e \), which allows us to factor out the constant \( e \):

$$ \int \frac{e^x \cdot e}{3+e^x} \ dx $$

$$ e \cdot \int \frac{e^x}{3+e^x} \ dx $$

To proceed, we'll apply the substitution method.

Let’s differentiate the expression \( 3 + e^x \):

$$ d(3 + e^x) = e^x \ dx $$

Solving for \( dx \), we get:

$$ dx = \frac{d(3 + e^x)}{e^x} $$

Substituting this into the integral:

$$ e \cdot \int \frac{e^x}{3+e^x} \cdot \frac{d(3+e^x)}{e^x} $$

The \( e^x \) terms cancel out, leaving:

$$ e \cdot \int \frac{1}{3+e^x} \, d(3+e^x) $$

We now set \( t = 3 + e^x \), so the integral becomes:

$$ e \cdot \int \frac{1}{t} \, dt $$

This is a standard integral, as \( \int \frac{1}{t} \, dt = \log |t| + c \):

$$ e \cdot \log |t| + c $$

Substituting back for \( t = 3 + e^x \), we obtain:

$$ e \cdot \log |3 + e^x| + c $$

Therefore, the final result is:

$$ \int \frac{e^{x+1}}{3+e^x} \ dx = e \cdot \log |3 + e^x| + c $$

And so on.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration