Integral Exercise 35
We are asked to evaluate the following integral:
$$ \int \frac{e^{x+1}}{3+e^x} \ dx $$
First, observe that \( e^{x+1} = e^x \cdot e \), which allows us to factor out the constant \( e \):
$$ \int \frac{e^x \cdot e}{3+e^x} \ dx $$
$$ e \cdot \int \frac{e^x}{3+e^x} \ dx $$
To proceed, we'll apply the substitution method.
Let’s differentiate the expression \( 3 + e^x \):
$$ d(3 + e^x) = e^x \ dx $$
Solving for \( dx \), we get:
$$ dx = \frac{d(3 + e^x)}{e^x} $$
Substituting this into the integral:
$$ e \cdot \int \frac{e^x}{3+e^x} \cdot \frac{d(3+e^x)}{e^x} $$
The \( e^x \) terms cancel out, leaving:
$$ e \cdot \int \frac{1}{3+e^x} \, d(3+e^x) $$
We now set \( t = 3 + e^x \), so the integral becomes:
$$ e \cdot \int \frac{1}{t} \, dt $$
This is a standard integral, as \( \int \frac{1}{t} \, dt = \log |t| + c \):
$$ e \cdot \log |t| + c $$
Substituting back for \( t = 3 + e^x \), we obtain:
$$ e \cdot \log |3 + e^x| + c $$
Therefore, the final result is:
$$ \int \frac{e^{x+1}}{3+e^x} \ dx = e \cdot \log |3 + e^x| + c $$
And so on.
