Integral Exercise

Let's evaluate the following integral:

$$ \int \frac{3e^{3x}}{6-e^{3x}} \, dx $$

To tackle this, we'll apply the substitution method. The idea is to simplify the integrand by introducing a new variable that replaces part of the expression.

A suitable substitution in this case is u = 6 - e3x.

$$ u = 6 - e^{3x} $$

We now differentiate \( u \) with respect to \( x \) to find \( du \), and express \( dx \) in terms of \( du \):

$$
\begin{align*}
u &= 6 - e^{3x} \\
\frac{du}{dx} &= -3e^{3x} \\
dx &= -\frac{1}{3e^{3x}} \, du
\end{align*} $$

Now we rewrite the original integral using this substitution:

$$ \int \frac{3e^{3x}}{6-e^{3x}} \, dx $$

Substituting dx = -\frac{1}{3e3x}\, du, we get:

$$ \int \frac{3e^{3x}}{6-e^{3x}} \cdot \left( -\frac{1}{3e^{3x}} \, du \right) $$

Next, replace 6 - e3x with \( u \):

$$ \int \frac{3e^{3x}}{u} \cdot \left( -\frac{1}{3e^{3x}} \, du \right) $$

We simplify by canceling out the exponential terms:

$$ \int - \frac{1}{u} \, du $$

The constant factor can be pulled out using the linearity property of integration:

$$ -\int \frac{1}{u} \, du $$

We’ve now reduced the problem to a basic integral.

The antiderivative of \( -\frac{1}{u} \) is simply \( -\ln|u| + C \), where \( C \) is the constant of integration:

$$ -\int \frac{1}{u} \, du = -\ln|u| + C $$

Substituting back \( u = 6 - e^{3x} \), we get:

$$ -\ln|6 - e^{3x}| + C $$

So the final result is the natural logarithm of the absolute value of \( 6 - e^{3x} \):

$$ \int \frac{3e^{3x}}{6-e^{3x}} \, dx = -\ln|6 - e^{3x}| + C $$

And that completes the solution.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration