Integral of x^(-2/3)

We’re asked to evaluate the integral of \( x^{-2/3} \):

$$ \int x^{- \frac{2}{3}} \ dx $$

This is a standard power function, so we apply the power rule for integration:

$$ \int x^n \ dx = \frac{x^{n+1}}{n+1} + c, \quad \text{for } n \ne -1 $$

Here, \( n = -\frac{2}{3} \), so we proceed as follows:

$$ \int x^{- \frac{2}{3}} \ dx = \frac{x^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1} + c $$

Now simplify the exponent and the denominator:

$$ = \frac{x^{\frac{-2 + 3}{3}}}{\frac{-2 + 3}{3}} + c $$

$$ = \frac{x^{\frac{1}{3}}}{\frac{1}{3}} + c $$

$$ = 3x^{\frac{1}{3}} + c $$

Therefore, the solution to the integral is:

$$ \int x^{- \frac{2}{3}} \ dx = 3x^{\frac{1}{3}} + c $$

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration