Conditions for an Affine Transformation to Be an Isometry

An affine transformation is an isometry if and only if the following conditions hold: $$ \begin{cases} a^2 + a'^2 = 1 \\ b^2 + b'^2 = 1 \\ ab + a'b' = 0 \end{cases} $$

    Proof

    Consider the general form of an affine transformation:

    \[
    \begin{cases}
    x' = a x + b y + c \\ \\
    y' = a' x + b' y + c'
    \end{cases}
    \]

    For the transformation to be well-defined, the determinant of the linear part must be nonzero:

    \[ \begin{pmatrix} a & b \\ a' & b' \end{pmatrix} \ne 0 \]

    Let us take two arbitrary points in the plane, \( A(x_A, y_A) \) and \( B(x_B, y_B) \).

    Their Euclidean distance is:

    $$ \overline{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} $$

    $$ \overline{AB} = \sqrt{ (\Delta x)^2 + (\Delta y)^2 } $$

    Under the affine transformation, the corresponding images are \( A'(x'_A, y'_A) \) and \( B'(x'_B, y'_B) \):

    \[
    \begin{cases}
    x_A' = a x_A + b y_A + c \\ \\
    y_A' = a' x_A + b' y_A + c'
    \end{cases}
    \]

    \[
    \begin{cases}
    x_B' = a x_B + b y_B + c \\ \\
    y_B' = a' x_B + b' y_B + c'
    \end{cases}
    \]

    The Euclidean distance between their images is then:

    $$ \overline{A'B'} = \sqrt{(x'_B - x'_A)^2 + (y'_B - y'_A)^2} $$

    Substituting the expressions for \( x'_A, x'_B, y'_A, \) and \( y'_B \), we obtain:

    $$ \overline{A'B'} = \sqrt{[a(x_B - x_A) + b(y_B - y_A)]^2 + [a'(x_B - x_A) + b'(y_B - y_A)]^2} $$

    Letting \( \Delta x = x_B - x_A \) and \( \Delta y = y_B - y_A \) for simplicity, we can rewrite this as:

    $$ \overline{A'B'} = \sqrt{[a \Delta x + b \Delta y]^2 + [a' \Delta x + b' \Delta y]^2} $$

    Expanding the squared terms gives:

    $$ \overline{A'B'} = \sqrt{a^2(\Delta x)^2 + 2ab(\Delta x \Delta y) + b^2(\Delta y)^2 + a'^2(\Delta x)^2 + 2a'b'(\Delta x \Delta y) + b'^2(\Delta y)^2} $$

    Grouping similar terms, we get:

    $$ \overline{A'B'} = \sqrt{(a^2 + a'^2)(\Delta x)^2 + (b^2 + b'^2)(\Delta y)^2 + 2(ab + a'b')(\Delta x \Delta y)} $$

    For the transformation to be an isometry, the Euclidean distance between any two points must remain unchanged:

    $$ \overline{AB} = \overline{A'B'} $$

    That is,

    $$  \sqrt{ (\Delta x)^2 + (\Delta y)^2 } = \sqrt{ (a^2 + a'^2)(\Delta x)^2 + (b^2 + b'^2)(\Delta y)^2 + 2(ab + a'b')(\Delta x \Delta y) } $$

    This equality holds precisely when:

    $$  \sqrt{ (\Delta x)^2 + (\Delta y)^2 } = \sqrt{ \underbrace{(a^2 + a'^2)}_{=1}(\Delta x)^2 + \underbrace{(b^2 + b'^2)}_{=1}(\Delta y)^2 + 2\underbrace{(ab + a'b')}_{=0}(\Delta x \Delta y) } $$

    By comparing coefficients, we conclude that an affine transformation preserves Euclidean distance if and only if the following conditions are satisfied:

    $$ \begin{cases} a^2 + a'^2 = 1 \\ b^2 + b'^2 = 1 \\ ab + a'b' = 0 \end{cases} $$

    This completes the proof.

    And so forth.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Geometric Transformations