Conditions for Similarity in an Affine Transformation

An affine transformation is a similarity transformation precisely when the following conditions are satisfied:

  • \( a^2 + a'^2 = b^2 + b'^2 \)
  • \( ab + a'b' = 0 \)

Under these constraints, the similarity ratio is:

\[ k = \sqrt{a^2+a'^2} = \sqrt{b^2+b'^2} \]

    Proof

    Consider the general affine transformation of the plane:

    \[ \begin{cases} x' = a x + b y + c \\[4pt] y' = a' x + b' y + c' \end{cases} \]

    Let \( A(x_A,y_A) \) and \( B(x_B,y_B) \) be two arbitrary points. Their images satisfy:

    \[ x_B' - x_A' = a(x_B-x_A) + b(y_B-y_A) \] \[ y_B' - y_A' = a'(x_B-x_A) + b'(y_B-y_A) \]

    The Euclidean distance between the image points is therefore:

    \[ \overline{A'B'} = \sqrt{\big[a(x_B-x_A)+b(y_B-y_A)\big]^2 + \big[a'(x_B-x_A)+b'(y_B-y_A)\big]^2} \]

    Squaring both sides yields a more manageable expression:

    \[ (\overline{A'B'})^2 = \big[a(x_B-x_A)+b(y_B-y_A)\big]^2 + \big[a'(x_B-x_A)+b'(y_B-y_A)\big]^2 \]

    Expanding the two squares gives:

    \[ \begin{aligned} (\overline{A'B'})^2 &= a^2(x_B-x_A)^2 + 2ab(x_B-x_A)(y_B-y_A) + b^2(y_B-y_A)^2 \\ &\quad + a'^2(x_B-x_A)^2 + 2a'b'(x_B-x_A)(y_B-y_A) + b'^2(y_B-y_A)^2 \end{aligned} \]

    Collecting like terms produces the standard quadratic form associated with the linear part of the affine map:

    \[ (\overline{A'B'})^2 = (a^2+a'^2)(x_B-x_A)^2 + (b^2+b'^2)(y_B-y_A)^2 + 2(ab+a'b')(x_B-x_A)(y_B-y_A) \]

    The original squared distance is simply:

    \[ (\overline{AB})^2 = (x_B-x_A)^2 + (y_B-y_A)^2. \]

    We now impose the metric requirement for similarity. By definition:

    \[ \overline{A'B'} = k\,\overline{AB} \]

    which is equivalent to

    \[ (\overline{A'B'})^2 = k^2(\overline{AB})^2. \]

    Substituting the expanded expression for \( (\overline{A'B'})^2 \), we obtain:

    \[ (a^2+a'^2)(x_B-x_A)^2 + (b^2+b'^2)(y_B-y_A)^2 + 2(ab+a'b')(x_B-x_A)(y_B-y_A) = k^2(\overline{AB})^2. \]

    The first condition, \( ab+a'b' = 0 \), eliminates the mixed term entirely:

    \[ \require{cancel} (a^2+a'^2)(x_B-x_A)^2 + (b^2+b'^2)(y_B-y_A)^2 + \cancel{2(ab+a'b')(x_B-x_A)(y_B-y_A)} = k^2(\overline{AB})^2. \]

    We are left with:

    \[ (a^2+a'^2)(x_B-x_A)^2 + (b^2+b'^2)(y_B-y_A)^2 = k^2(\overline{AB})^2. \]

    The second condition requires that the two coefficients be equal, that is:

    \[ a^2+a'^2 = b^2+b'^2 = k^2. \]

    Substituting this common value gives:

    \[ k^2(x_B-x_A)^2 + k^2(y_B-y_A)^2 = k^2(\overline{AB})^2. \]

    Factoring out \( k^2 \):

    \[ k^2\big[(x_B-x_A)^2 + (y_B-y_A)^2\big] = k^2(\overline{AB})^2. \]

    Since the expression in brackets is exactly \( (\overline{AB})^2 \), the equality holds identically:

    \[ (\overline{A'B'})^2 = k^2(\overline{AB})^2. \]

    Taking square roots, we recover the defining property of a similarity transformation:

    \[ \overline{A'B'} = k\,\overline{AB}. \]

    Thus the affine map preserves all distances up to the constant factor \( k \), and is therefore a similarity transformation with similarity ratio

    \[ k = \sqrt{a^2+a'^2} = \sqrt{b^2+b'^2}. \]

    The argument is complete.

    And so on.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Geometric Transformations