Conditions for Similarity in an Affine Transformation
An affine transformation is a similarity transformation precisely when the following conditions are satisfied:
- \( a^2 + a'^2 = b^2 + b'^2 \)
- \( ab + a'b' = 0 \)
Under these constraints, the similarity ratio is:
\[ k = \sqrt{a^2+a'^2} = \sqrt{b^2+b'^2} \]
Proof
Consider the general affine transformation of the plane:
\[ \begin{cases} x' = a x + b y + c \\[4pt] y' = a' x + b' y + c' \end{cases} \]
Let \( A(x_A,y_A) \) and \( B(x_B,y_B) \) be two arbitrary points. Their images satisfy:
\[ x_B' - x_A' = a(x_B-x_A) + b(y_B-y_A) \] \[ y_B' - y_A' = a'(x_B-x_A) + b'(y_B-y_A) \]
The Euclidean distance between the image points is therefore:
\[ \overline{A'B'} = \sqrt{\big[a(x_B-x_A)+b(y_B-y_A)\big]^2 + \big[a'(x_B-x_A)+b'(y_B-y_A)\big]^2} \]
Squaring both sides yields a more manageable expression:
\[ (\overline{A'B'})^2 = \big[a(x_B-x_A)+b(y_B-y_A)\big]^2 + \big[a'(x_B-x_A)+b'(y_B-y_A)\big]^2 \]
Expanding the two squares gives:
\[ \begin{aligned} (\overline{A'B'})^2 &= a^2(x_B-x_A)^2 + 2ab(x_B-x_A)(y_B-y_A) + b^2(y_B-y_A)^2 \\ &\quad + a'^2(x_B-x_A)^2 + 2a'b'(x_B-x_A)(y_B-y_A) + b'^2(y_B-y_A)^2 \end{aligned} \]
Collecting like terms produces the standard quadratic form associated with the linear part of the affine map:
\[ (\overline{A'B'})^2 = (a^2+a'^2)(x_B-x_A)^2 + (b^2+b'^2)(y_B-y_A)^2 + 2(ab+a'b')(x_B-x_A)(y_B-y_A) \]
The original squared distance is simply:
\[ (\overline{AB})^2 = (x_B-x_A)^2 + (y_B-y_A)^2. \]
We now impose the metric requirement for similarity. By definition:
\[ \overline{A'B'} = k\,\overline{AB} \]
which is equivalent to
\[ (\overline{A'B'})^2 = k^2(\overline{AB})^2. \]
Substituting the expanded expression for \( (\overline{A'B'})^2 \), we obtain:
\[ (a^2+a'^2)(x_B-x_A)^2 + (b^2+b'^2)(y_B-y_A)^2 + 2(ab+a'b')(x_B-x_A)(y_B-y_A) = k^2(\overline{AB})^2. \]
The first condition, \( ab+a'b' = 0 \), eliminates the mixed term entirely:
\[ \require{cancel} (a^2+a'^2)(x_B-x_A)^2 + (b^2+b'^2)(y_B-y_A)^2 + \cancel{2(ab+a'b')(x_B-x_A)(y_B-y_A)} = k^2(\overline{AB})^2. \]
We are left with:
\[ (a^2+a'^2)(x_B-x_A)^2 + (b^2+b'^2)(y_B-y_A)^2 = k^2(\overline{AB})^2. \]
The second condition requires that the two coefficients be equal, that is:
\[ a^2+a'^2 = b^2+b'^2 = k^2. \]
Substituting this common value gives:
\[ k^2(x_B-x_A)^2 + k^2(y_B-y_A)^2 = k^2(\overline{AB})^2. \]
Factoring out \( k^2 \):
\[ k^2\big[(x_B-x_A)^2 + (y_B-y_A)^2\big] = k^2(\overline{AB})^2. \]
Since the expression in brackets is exactly \( (\overline{AB})^2 \), the equality holds identically:
\[ (\overline{A'B'})^2 = k^2(\overline{AB})^2. \]
Taking square roots, we recover the defining property of a similarity transformation:
\[ \overline{A'B'} = k\,\overline{AB}. \]
Thus the affine map preserves all distances up to the constant factor \( k \), and is therefore a similarity transformation with similarity ratio
\[ k = \sqrt{a^2+a'^2} = \sqrt{b^2+b'^2}. \]
The argument is complete.
And so on.
