Ellipse Tangent Line Formulas

The tangent line formulas help determine the equation of a tangent line at a point P(x0, y0) on the ellipse. $$ \frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1 $$

This formula can only be used if the point P(x0, y0) is on the ellipse. It does not work for points outside the ellipse.

If the ellipse is centered at a point other than the origin, the equation of the tangent line at a point P(x0, y0) on the ellipse can be calculated using the following splitting formula.

$$ A xx_0 + B yy_0 + C \frac{x+x_0}{2} + D \frac{y+y_0}{2} + E = 1 $$

In both cases, this is an application of the conic splitting formula to an ellipse.

Example

Consider the ellipse with the equation:

$$ x^2 + 4y^2 = 40 $$

We convert it to the standard form by dividing both sides by 40:

$$ \frac{x^2 + 4y^2}{40} = \frac{40}{40} $$

$$ \frac{x^2}{40} + \frac{y^2}{10} = 1 $$

Here, a2 = 40 and b2 = 10.

We need to find the equation of the tangent line to the ellipse at the point (2, 3).

$$ P(x_0, y_0) = (2, 3) $$

Using the tangent line formula with the coordinates x0 = 2 and y0 = 3:

$$ \frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1 $$

$$ \frac{x \cdot 2}{40} + \frac{y \cdot 3}{10} = 1 $$

$$ \frac{x}{20} + \frac{y \cdot 3}{10} = 1 $$

$$ y = \frac{10}{3} \cdot \left( 1 - \frac{x}{20} \right) $$

$$ y = -\frac{1}{6}x + \frac{10}{3} $$

This is the equation of the tangent line at the point P(2, 3) on the ellipse.

ellipse diagram

Example 2

Consider an ellipse centered at the point P(3,2).

$$ \frac{ (x-3)^2}{40} + \frac{(y-2)^2}{10} = 1 $$

We transform the equation of the ellipse into the general form:

$$ \frac{x^2-6x+9}{40} + \frac{y^2-4y+4}{10} = 1 $$

$$ \frac{x^2-6x+9}{40} + \frac{4 \cdot (y^2-4y+4)}{40} = 1 $$

$$ \frac{x^2-6x+9 + 4 \cdot (y^2-4y+4)}{40} = 1 $$

$$ x^2-6x+9 + 4 \cdot (y^2-4y+4) = 40 $$

$$ x^2-6x+9 + 4y^2-16y+16 = 40 $$

$$ x^2 + 4y^2 -6x-16y + 16 + 9 - 40 = 0 $$

$$ x^2 + 4y^2 -6x-16y - 15 = 0 $$

Once we have the general form $ Ax^2 + By^2 + Cx + Dy + E = 0 $, we can find the equation of the tangent line at the point $ P(x_0, y_0) = (5,5) $ by substituting $ x^2 \rightarrow xx_0 $ and $ y^2 \rightarrow yy_0 $

$$ xx_0 + 4yy_0 -6x-16y - 15 = 0 $$

Next, we substitute $ x \rightarrow \frac{x+x_0}{2} $ and $ y \rightarrow \frac{y+y_0}{2} $

$$ xx_0 + 4yy_0 -6 ( \frac{x+x_0}{2} ) -16 ( \frac{y+y_0}{2} ) - 15 = 0 $$

$$ xx_0 + 4yy_0 -3 (x+x_0) -8 (y+y_0) - 15 = 0 $$

Finally, we substitute the coordinates of the point of tangency $ P(x_0, y_0) = (5,5) $, so $ x_0 = 5 $ and $ y_0 = 5 $

$$ x \cdot 5 + 4y \cdot 5 -3 (x+5) -8 (y+5) - 15 = 0 $$

$$ 5x + 20y -3x - 15 - 8y - 40 - 15 = 0 $$

$$ 2x + 12y - 70 = 0 $$

This is the equation of the tangent line to the ellipse at the point $ P(5,5) $

The tangent line to the ellipse

Proof

Let's start with the equation of the ellipse:

$$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

Assume a tangent line to this ellipse passes through the point \((x_0, y_0)\) which lies on the ellipse, so:

$$ \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1 $$

Consider the equation of a line passing through the point \((x_0, y_0)\):

$$ y = mx + c $$

Substitute this line equation into the ellipse's equation:

$$ \frac{x^2}{a^2} + \frac{(mx + c)^2}{b^2} = 1 $$

$$ \frac{x^2}{a^2} + \frac{m^2x^2 + 2mxc + c^2}{b^2} = 1 $$

Multiply by \(a^2b^2\) to clear the denominators:

$$ b^2x^2 + a^2m^2x^2 + 2a^2mxc + a^2c^2 = a^2b^2 $$

Rearrange the equation into quadratic form:

$$ (b^2 + a^2m^2)x^2 + 2a^2mxc + (a^2c^2 - a^2b^2) = 0 $$

For the line to be tangent to the ellipse, the discriminant of this quadratic equation must be zero. The discriminant \(\Delta\) for the quadratic equation \(Ax^2 + Bx + C = 0\) is given by:

$$ \Delta = B^2 - 4AC $$

Where \( A = b^2 + a^2m^2 \), \( B = 2a^2mc \), and \( C = a^2c^2 - a^2b^2 \)

Calculate the discriminant:

$$ \Delta = (2a^2mc)^2 - 4(b^2 + a^2m^2)(a^2c^2 - a^2b^2) $$

Expand and simplify:

$$ \Delta = 4a^4m^2c^2 - 4(b^2 + a^2m^2)(a^2c^2 - a^2b^2) $$

$$ \Delta = 4a^4m^2c^2 - 4[b^2a^2c^2 - b^2a^2b^2 + a^4m^2c^2 - a^4m^2b^2] $$

$$ \Delta = 4a^4m^2c^2 - 4b^2a^2c^2 + 4b^4a^2 - 4a^4m^2c^2 + 4a^4m^2b^2 $$

$$ \Delta = -4b^2a^2c^2 + 4b^4a^2 + 4a^4m^2b^2 $$

For the discriminant to be zero, \( \Delta = 0 \):

$$ -4b^2a^2c^2 + 4b^4a^2 + 4a^4m^2b^2 = 0 $$

Divide by \(4a^2\):

$$ -b^2c^2 + b^4 + a^2m^2b^2 = 0 $$

Simplify to obtain:

$$ b^2(b^2 + a^2m^2) = b^2c^2 $$

Divide by \(b^2\):

$$ b^2 + a^2m^2 = c^2 $$

$$ c^2 = b^2 + a^2m^2 $$

To find \(m\) and \(c\) in terms of \((x_0, y_0)\), we know \(y_0 = mx_0 + c\).

From this, we can express \(c\) as \( c = y_0 - mx_0 \)

Substitute \(c\) into the equation \(b^2 + a^2m^2 = c^2\):

$$ b^2 + a^2m^2 = (y_0 - mx_0)^2 $$

$$ b^2 + a^2m^2 = y_0^2 - 2y_0mx_0 + m^2x_0^2 $$

Rearrange to find \(m\):

$$ b^2 = y_0^2 - 2y_0mx_0 + m^2(x_0^2 - a^2) $$

Collect the \(m\) terms:

$$ b^2 = y_0^2 - 2y_0mx_0 + m^2(x_0^2 - a^2) $$

Now isolate \(m\):

$$ y_0^2 - 2y_0mx_0 + m^2(x_0^2 - a^2) = b^2 $$

Bring everything to the left to get a quadratic equation in \(m\):

$$ m^2(x_0^2 - a^2) - 2y_0mx_0 + (y_0^2 - b^2) = 0 $$

This is a quadratic equation in \(m\). We can solve it using the quadratic formula:

$$ m = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} $$

In this case, \( A = x_0^2 - a^2 \), \( B = -2y_0x_0 \), and \( C = y_0^2 - b^2 \)

For a tangent line, the discriminant must be zero:

$$ B^2 - 4AC = 0 $$

Thus:

$$ (-2y_0x_0)^2 - 4(x_0^2 - a^2)(y_0^2 - b^2) = 0 $$

$$ 4y_0^2x_0^2 - 4(x_0^2 - a^2)(y_0^2 - b^2) = 0 $$

$$ y_0^2x_0^2 = (x_0^2 - a^2)(y_0^2 - b^2) $$

Solving this equation, we find \(m\).

$$ y_0^2x_0^2 = (x_0^2 - a^2)(y_0^2 - b^2) $$

$$ y_0^2x_0^2 = x_0^2y_0^2 - x_0^2b^2 - y_0^2a^2 + a^2b^2 $$

$$ - x_0^2b^2 - y_0^2a^2 + a^2b^2 = 0 $$

$$ x_0^2b^2 + y_0^2a^2 = a^2b^2 $$

$$ \frac{x_0^2b^2}{a^2b^2} + \frac{y_0^2a^2}{a^2b^2} = \frac{a^2b^2}{a^2b^2} $$

$$ \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1 $$

Since \((x_0, y_0)\) is a point on the ellipse and also a point on the tangent line, we can substitute \( x_0^2 = x_0 \cdot x \) and \( y_0^2 = y_0 \cdot y \).

$$ \frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1 $$

This equation satisfies the tangency condition for any point \((x_0, y_0)\) on the ellipse.

And so forth.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Ellipse

How to find the equation of an ellipse given: