How to Determine the Equation of an Ellipse Given a Point and Eccentricity

To determine the equation of an ellipse centered at the origin, given a point's coordinates and the ellipse's eccentricity, substitute the point's coordinates into the general equation of the ellipse:

$$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

Depending on whether the major axis is horizontal or vertical, use the corresponding formula for eccentricity:

  • If the major axis is horizontal (a > b): $$ e = \sqrt{1 - \frac{b^2}{a^2} } $$
  • If the major axis is vertical (b > a): $$ e = \sqrt{1 - \frac{a^2}{b^2} } $$

Set up a system of equations and solve for the unknown values.

Note: If the major axis is unknown, both scenarios must be considered.

    A Practical Example

    Consider an ellipse passing through the point \((1, -\sqrt{3})\) with an eccentricity \( e = \frac{\sqrt{3}}{3} \).

    Since the major axis is unknown, we need to analyze both scenarios.

    1] First Case: \(a\) is the Major Axis (a > b)

    For a horizontal major axis (a > b), the eccentricity formula is:

    $$ e = \sqrt{1 - \frac{b^2}{a^2}} = \frac{\sqrt{3}}{3} $$

    Square both sides of the equation:

    $$ \left( \sqrt{1 - \frac{b^2}{a^2}} \right)^2 = \left( \frac{\sqrt{3}}{3} \right)^2 $$

    $$ 1 - \frac{b^2}{a^2} = \frac{3}{9} $$

    $$ 1 - \frac{b^2}{a^2} = \frac{1}{3} $$

    $$ - \frac{b^2}{a^2} = \frac{1}{3} - 1 $$

    $$ - \frac{b^2}{a^2} = \frac{1-3}{3} $$

    $$ - \frac{b^2}{a^2} = - \frac{2}{3} $$

    Multiply both sides by -1:

    $$ \frac{b^2}{a^2} = \frac{2}{3} $$

    $$ b^2 = \frac{2}{3} a^2 $$

    Take the square root of both sides:

    $$ \sqrt{ b^2 } = \sqrt{ \frac{2}{3} a^2 } $$

    $$ b = a \sqrt{\frac{2}{3}} $$

    Now substitute the known point \((1, -\sqrt{3})\) into the general equation of the ellipse:

    $$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

    $$ \frac{1^2}{a^2} + \frac{(-\sqrt{3})^2}{b^2} = 1 $$

    Knowing \( b = a \sqrt{\frac{2}{3}} \), substitute \( b \):

    $$ \frac{1}{a^2} + \frac{3}{(a \cdot \sqrt{ \frac{2}{3} })^2} = 1 $$

    $$ \frac{1}{a^2} + \frac{3}{a^2 \cdot \frac{2}{3}} = 1 $$

    $$ \frac{1}{a^2} + \frac{3}{\frac{2}{3} a^2} = 1 $$

    $$ \frac{1}{a^2} + 3 \cdot \frac{3}{2a^2} = 1 $$

    $$ \frac{1}{a^2} + \frac{9}{2 a^2} = 1 $$

    $$ \frac{2+9}{2 a^2} = 1 $$

    $$ \frac{11}{2 a^2} = 1 $$

    $$ 2 a^2 = 11 $$

    $$ a^2 = \frac{11}{2} $$

    $$ a = \sqrt{\frac{11}{2}} $$

    Once we have \( a = \sqrt{\frac{11}{2}} \), we can calculate \( b \):

    $$ b = a \sqrt{\frac{2}{3}} $$

    $$ b = \sqrt{\frac{11}{2}} \sqrt{\frac{2}{3}} $$

    $$ b = \sqrt{ \frac{11}{2} \cdot \frac{2}{3} } $$

    $$ b = \sqrt{ \frac{11}{3} } $$

    So, the equation of the ellipse with \( a = \sqrt{\frac{11}{2}} \) and \( b = \sqrt{ \frac{11}{3} } \) is:

    $$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

    $$ \frac{x^2}{( \sqrt{\frac{11}{2}} )^2} + \frac{y^2}{( \sqrt{ \frac{11}{3} } )^2} = 1 $$

    $$ \frac{x^2}{ \frac{11}{2} } + \frac{y^2}{ \frac{11}{3} } = 1 $$

    $$ \frac{2x^2}{ 11 } + \frac{3y^2}{ 11 } = 1 $$

    Here is the graphical representation:

    example

    The ellipse passes through the given point.

    2] Second Case: \(a\) is the Minor Axis (a < b)

    When \( b \) is the major axis, the eccentricity formula is:

    $$ e = \sqrt{1 - \frac{a^2}{b^2}} = \frac{\sqrt{3}}{3} $$

    Square both sides of the equation:

    $$ \left( \sqrt{1 - \frac{a^2}{b^2}} \right)^2 = \left( \frac{\sqrt{3}}{3} \right)^2 $$

    $$ 1 - \frac{a^2}{b^2} = \frac{3}{9} $$

    $$ 1 - \frac{a^2}{b^2} = \frac{1}{3} $$

    $$ - \frac{a^2}{b^2} = \frac{1}{3} - 1 $$

    $$ - \frac{a^2}{b^2} = \frac{1-3}{3} $$

    $$ - \frac{a^2}{b^2} = - \frac{2}{3} $$

    Multiply both sides by -1:

    $$ \frac{a^2}{b^2} = \frac{2}{3} $$

    $$ a = b \sqrt{\frac{2}{3}} $$

    Now substitute the known point \((1, -\sqrt{3})\) into the general equation of the ellipse:

    $$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

    $$ \frac{1^2}{a^2} + \frac{(-\sqrt{3})^2}{b^2} = 1 $$

    Knowing \( a = b \sqrt{\frac{2}{3}} \):

    $$ \frac{1}{( b \sqrt{\frac{2}{3}} )^2} + \frac{3}{b^2} = 1 $$

    $$ \frac{1}{b^2 \cdot \frac{2 }{3}} + \frac{3}{b^2} = 1 $$

    $$ \frac{3}{2 b^2} + \frac{3}{b^2} = 1 $$

    $$ \frac{3+6}{2 b^2} = 1 $$

    $$ \frac{9}{2 b^2} = 1 $$

    $$ 2 b^2 = 9 $$

    $$ b^2 = \frac{9}{2} $$

    $$ b = \sqrt{\frac{9}{2}} $$

    $$ b = \frac{3}{\sqrt{2}} $$

    Multiply and divide by the square root of 2:

    $$ b = \frac{3}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} $$

    $$ b = \frac{3 \sqrt{2}}{2} $$

    Once we have \( b = \frac{3 \sqrt{2}}{2} \), we can calculate \( a \):

    $$ a = b \sqrt{\frac{2}{3}} $$

    $$ a = \frac{3 \sqrt{2}}{2} \cdot \sqrt{\frac{2}{3}} $$

    $$ a = \frac{3 \sqrt{2}}{2} \cdot \sqrt{\frac{2}{3}} $$

    $$ a = \frac{3 \sqrt{2}}{2} \cdot \frac{\sqrt{2}}{\sqrt{3}} $$

    $$ a = \frac{3 \cdot 2}{2 \sqrt{3}} $$

    $$ a = \frac{3}{\sqrt{3}} $$

    $$ a = \frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} $$

    $$ a = \frac{3 \sqrt{3}}{\sqrt{3} \sqrt{3}} $$

    $$ a = \frac{3 \sqrt{3}}{3} $$

    $$ a = \sqrt{3} $$

    Now we can substitute \( a = \sqrt{3} \) and \( b = \frac{3 \sqrt{2}}{2} \) into the general equation of the ellipse:

    $$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

    $$ \frac{x^2}{( \sqrt{3} )^2} + \frac{y^2}{( \frac{3 \sqrt{2}}{2} )^2} = 1 $$

    $$ \frac{x^2}{3} + \frac{y^2}{ \frac{9 \cdot 2}{4} } = 1 $$

    $$ \frac{x^2}{3} + \frac{y^2}{ \frac{9}{2} } = 1 $$

    $$ \frac{x^2}{3} + \frac{2y^2}{ 9 } = 1 $$

    This is the equation of the ellipse if \(b\) is the major axis.

    Here is the graphical representation:

    ellipse example

    Thus, the ellipse passing through the point \((1, -\sqrt{3})\) with an eccentricity of \(\frac{\sqrt{3}}{3}\) can be described by either of the above equations, depending on which assumption (major or minor axis) is correct.

    And so on.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Ellipse

    How to find the equation of an ellipse given: