How to Determine the Equation of an Ellipse Given Its Eccentricity and a Vertex

To find the equation of an ellipse centered at the origin, expressed as $$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$, and given a vertex $ V(x_v;y_v) $ and the eccentricity $ e $, we need to establish whether the major axis is horizontal or vertical.

  • If the major axis is horizontal (a>b), use the eccentricity formula $ e = \frac{c}{a} $ and the relationship $ c^2 = a^2 - b^2 $.
  • If the major axis is vertical (b>a), use the eccentricity formula $ e = \frac{c}{b} $ and the relationship $ c^2 = b^2 - a^2 $.

Knowing the vertex $ V(x_v;y_v) $ allows us to determine the length of either a semi-major or semi-minor axis.

If the problem doesn't specify the major axis, both possibilities must be considered.

    A Practical Example

    An ellipse centered at the origin has a vertex at \((-3,0)\) and \(e= \frac{\sqrt{7}}{3}\).

    Knowing only a vertex doesn't reveal the major axis.

    Therefore, we need to consider two scenarios: the major axis could be horizontal or vertical.

    1] The Major Axis is Horizontal

    In this scenario, the semi-major axis \(a\) is the larger one, where the foci of the ellipse are located.

    For an ellipse centered at the origin with the vertex \((-3,0)\), the semi-major axis has a length of $ a=3 $.

    Given \(a=3\), the eccentricity formula \(e\) is $ e=\frac{c}{a} $:

    $$ e = \frac{c}{a} = \frac{\sqrt{7}}{3} $$

    This means the distance from the center to the foci is $ c= \sqrt{7} $.

    For a horizontal major axis, the relationship is \(c^2 = a^2 - b^2\).

    $$ c^2 = a^2 - b^2 $$

    Knowing $ a=3 $ and $ c= \sqrt{7} $:

    $$ (\sqrt{7})^2 = 3^2 - b^2 $$

    $$ 7 = 9 - b^2 $$

    $$ b^2 = 9 - 7 $$

    $$ b^2 = 2 $$

    $$ b = \sqrt{2} $$

    Now we have the lengths of the semi-major axis $ a = 3 $ and the semi-minor axis $ b = \sqrt{2} $.

    Substituting \(a\) and \(b\) into the standard equation of the ellipse, we get:

    $$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

    $$ \frac{x^2}{3^2} + \frac{y^2}{( \sqrt{2} )^2} = 1 $$

    $$ \boxed{\frac{x^2}{9} + \frac{y^2}{2} = 1} $$

    This is the equation of the ellipse with a vertex at \( (-3;0) \) and an eccentricity \( e= \frac{\sqrt{7}}{3} \) when the major axis is horizontal.

    Graphical representation of the ellipse equation

    Note: With semi-axes $ a=3 $ and $ b = \sqrt{2} $, and the focal distance $ c= \sqrt{7} $, the eccentricity is $$ e = \frac{c}{a} = \frac{ \sqrt{7 }}{3 } $$

    2] The Major Axis is Vertical

    In this scenario, the semi-major axis \(b\) is the larger one, meaning the vertical axis is where the foci of the ellipse are located.

    From the problem, we know the length of the semi-minor horizontal axis, which is $ a=3 $.

    For a vertical major axis, the eccentricity formula is $ e = \frac{c}{b} $ and the relationship between the axes is $ c^2 = b^2 - a^2 $:

    $$ e = \frac{c}{b} = \frac{\sqrt{7}}{3} $$

    Where $ c^2 = b^2 - a^2 $, so $ c = \sqrt{b^2 - a^2} $:

    $$ \frac{\sqrt{b^2 - a^2}}{b} = \frac{\sqrt{7}}{3} $$

    Knowing the semi-minor horizontal axis is $ a=3 $:

    $$ \frac{\sqrt{b^2 - 3^2}}{b} = \frac{\sqrt{7}}{3} $$

    $$ \frac{\sqrt{b^2 - 9}}{b} = \frac{\sqrt{7}}{3} $$

    $$ \sqrt{b^2 - 9} = \frac{\sqrt{7}}{3} b $$

    Square both sides:

    $$ (\sqrt{b^2 - 9})^2 = (\frac{\sqrt{7}}{3} b)^2 $$

    $$ b^2 - 9 = \frac{7}{9} b^2 $$

    $$ b^2 - \frac{7}{9} b^2 = 9 $$

    $$ \frac{9b^2 - 7b^2}{9} = 9 $$

    $$ \frac{2b^2}{9} = 9 $$

    $$ b^2 = \frac{81}{2} $$

    Taking the square root of both sides:

    $$ \sqrt{b^2} = \sqrt{\frac{81}{2}} $$

    $$ b = \frac{9}{\sqrt{2}} $$

    Multiply and divide by $ \sqrt{2} $ to rationalize the denominator:

    $$ b = \frac{9}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} $$

    $$ b = \frac{9 \sqrt{2}}{2} $$

    Now we know the lengths of the semi-minor axis $ a=3 $ and the semi-major axis $ b = \frac{9 \sqrt{2}}{2} $.

    Substituting $ a $ and $ b $ into the equation of the ellipse:

    $$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

    $$ \frac{x^2}{3^2} + \frac{y^2}{( \frac{9 \sqrt{2}}{2} )^2} = 1 $$

    $$ \frac{x^2}{9} + \frac{y^2}{ \frac{81}{2} } = 1 $$

    $$ \frac{x^2}{9} + y^2 \cdot \frac{2}{81} = 1 $$

    $$ \boxed{ \frac{x^2}{9} + \frac{2y^2}{81} = 1 } $$

    This is the equation of the ellipse with a vertex at \( (-3;0) \) and an eccentricity \( e= \frac{\sqrt{7}}{3} \) when the major axis is vertical.

    Graphical representation of the ellipse when the major axis is vertical

    Note: With semi-axes $ a=3 $ and $ b= \frac{ 9 \sqrt{2} }{2 } $, the eccentricity is $$ e = \frac{c}{b} = \frac{c}{ \frac{ 9 \sqrt {2} }{2 } } $$ Knowing that $ c^2 = b^2 - a^2 $, then $ c = \sqrt{b^2 - a^2} $ $$ e = \frac{ \sqrt{b^2 - a^2}}{ \frac{ 9 \sqrt{2} }{2 } } $$ $$ e = \frac{ \sqrt{( \frac{ 9 \sqrt{2} }{2 } )^2 - 3^2}}{ \frac{ 9 \sqrt{2} }{2 } } $$ $$ e = \frac{ \sqrt{ \frac{ 81 }{2 } - 9 }}{ \frac{ 9 \sqrt{2} }{2 } } $$ $$ e = \frac{ \sqrt{ \frac{ 81 - 18 } {2 }}}{ \frac{ 9 \sqrt{2} }{2 } } $$ $$ e = \frac{ \sqrt{ \frac{ 63 }{2 }}}{ \frac{ 9 \sqrt{2} }{2 } } $$ $$ e = \frac{ \sqrt{63} }{\sqrt{2} } \cdot \frac{ 2 }{9 \sqrt{2} } $$ $$ e = \frac{ \sqrt{7 \cdot 3^2} }{2 } \cdot \frac{ 2 }{9 \sqrt{2} } $$ $$ e = \frac{ 3 \sqrt{7} }{ \sqrt{2} } \cdot \frac{\sqrt{2}}{ \sqrt{2}} \cdot \frac{ 2 }{9 \sqrt{2} } $$ $$ e = \frac{ 3 \sqrt{14} }{2 } \cdot \frac{ 2 }{9 \sqrt{2} } $$ $$ \require{cancel} e = \frac{ 3 \sqrt{14} }{ \cancel{2} } \cdot \frac{ \cancel{2} }{9 \sqrt{2} } $$ $$ e = \frac{ \sqrt{14} }{ 3 \sqrt{2} } $$ $$ e = \frac{1}{3} \cdot \frac{ \sqrt{14} }{ \sqrt{2} } $$ $$ e = \frac{1}{3} \cdot \sqrt{ \frac{14}{2}} $$ $$ e = \frac{1}{3} \cdot \sqrt{ 7 } $$ $$ e = \frac{ \sqrt{ 7 } }{3} $$

    In conclusion, without additional information, both equations are valid solutions for the ellipse.

    And so on.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Ellipse

    How to find the equation of an ellipse given: