How to Determine the Equation of an Ellipse Given a Point and a Vertex

To write the equation of an ellipse centered at the origin, given a vertex and a point, we substitute the data into the general equation: $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

    A Practical Example

    Consider an ellipse centered at the origin $ O(0,0) $ with a vertex at $ V(-3,0) $ and passing through the point $ P \left( - \frac{3\sqrt{2}}{2}, -2 \right) $.

    initial data of the problem

    The vertex $ V(-3,0) $ lies on the x-axis.

    Since the vertices are symmetrical about the origin, the other horizontal vertex is $ V(3,0) $.

    The distance between the vertex $ V(-3,0) $ and the origin $ O(0,0) $ is the length of the horizontal semi-major axis.

    $$ a = \sqrt{(x_v - x_o)^2 + (y_v - y_o)^2} $$

    $$ a = \sqrt{(-3 - 0)^2 + (0 - 0)^2} $$

    $$ a = \sqrt{9} $$

    $$ a = 3 $$

    Now, let's write the general equation of the ellipse.

    $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

    Substitute the length of the horizontal semi-major axis $ a = 3 $.

    $$\frac{x^2}{3^2} + \frac{y^2}{b^2} = 1 $$

    $$\frac{x^2}{9} + \frac{y^2}{b^2} = 1 $$

    Next, substitute $ x $ and $ y $ with the coordinates of point $ P \left( - \frac{3\sqrt{2}}{2}, -2 \right) $.

    $$\frac{\left( - \frac{3\sqrt{2}}{2} \right)^2}{9} + \frac{(-2)^2}{b^2} = 1 $$

    $$\frac{ \frac{9 \cdot 2}{4} }{9} + \frac{4}{b^2} = 1 $$

    $$\frac{ \frac{18}{4} }{9} + \frac{4}{b^2} = 1 $$

    $$\frac{ \frac{9}{2} }{9} + \frac{4}{b^2} = 1 $$

    $$ \frac{9}{2} \cdot \frac{1}{9} + \frac{4}{b^2} = 1 $$

    $$ \frac{1}{2} + \frac{4}{b^2} = 1 $$

    Now we solve for $ b $, the length of the vertical semi-major axis.

    $$ \frac{4}{b^2} = 1 - \frac{1}{2} $$

    $$ \frac{4}{b^2} = \frac{1}{2} $$

    $$ b^2 = 2 \cdot 4 $$

    $$ b^2 = 8 $$

    $$ b = \sqrt{8} $$

    $$ b = 2\sqrt{2} $$

    Since $ a > b $, the major axis of the ellipse is horizontal.

    Once we have the lengths of the semi-major axes $ a = 3 $ and $ b = 2\sqrt{2} $, we substitute them into the general equation of the ellipse.

    $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$

    $$\frac{x^2}{3^2} + \frac{y^2}{(2\sqrt{2})^2} = 1 $$

    $$\frac{x^2}{9} + \frac{y^2}{4 \cdot 2} = 1 $$

    $$\frac{x^2}{9} + \frac{y^2}{8} = 1 $$

    $$ \frac{8x^2 + 9y^2}{72} = 1 $$

    $$ 8x^2 + 9y^2 = 72 $$

    This is the equation of the ellipse centered at the origin $ O(0,0) $, with a vertex at $ V(-3,0) $ and passing through the point $ P \left( - \frac{3\sqrt{2}}{2}, -2 \right) $.

    ellipse graph

    And that's it.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Ellipse

    How to find the equation of an ellipse given: