Integral Calculation - Exercise 27

We are asked to evaluate the following indefinite integral:

$$ \int 2 \cdot \tan^2(x) - 1 \ dx $$

This integral can be tackled using different techniques.

Solution 1

Let’s begin by breaking the expression apart using the linearity of integration:

$$ \int 2 \cdot \tan^2(x) \ dx - \int 1 \ dx $$

$$ = 2 \cdot \int \tan^2(x) \ dx - \int 1 \ dx $$

The second term is immediate: \( \int 1 \ dx = x + c \).

So we have:

$$ 2 \cdot \int \tan^2(x) \ dx - x + c $$

We now recall the trigonometric identity:

$$ \tan^2(x) = \frac{1}{\cos^2(x)} - 1 $$

Explanation. Starting from the Pythagorean identity: $$ \sin^2(x) + \cos^2(x) = 1 $$ Dividing both sides by \( \cos^2(x) \): $$ \frac{\sin^2(x)}{\cos^2(x)} + 1 = \frac{1}{\cos^2(x)} $$ Hence, $$ \frac{\sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} - 1 $$ By the definition of tangent: $$ \tan^2(x) = \frac{1}{\cos^2(x)} - 1 $$

Substitute this into the integral:

$$ 2 \cdot \int \left( \frac{1}{\cos^2(x)} - 1 \right) dx - x + c $$

Apply linearity again:

$$ 2 \cdot \left( \int \frac{1}{\cos^2(x)} \ dx - \int 1 \ dx \right) - x + c $$

Now evaluate each term. We know: \( \int \frac{1}{\cos^2(x)} \ dx = \tan(x) + C \), and \( \int 1 \ dx = x + C \)

Therefore:

$$ 2 \cdot (\tan(x) - x) - x + c $$

$$ = 2 \tan(x) - 2x - x + c $$

$$ = 2 \tan(x) - 3x + c $$

This is the final result.

Solution 2

Let’s start again from the original integral:

$$ \int 2 \cdot \tan^2(x) - 1 \ dx $$

We use the definition of tangent: \( \tan(x) = \frac{\sin(x)}{\cos(x)} \)

So we rewrite the integrand:

$$ \int 2 \cdot \frac{\sin^2(x)}{\cos^2(x)} - 1 \ dx $$

Which simplifies to:

$$ \int \frac{2 \sin^2(x) - \cos^2(x)}{\cos^2(x)} \ dx $$

Now apply the identity \( \sin^2(x) = 1 - \cos^2(x) \), and substitute:

$$ \int \frac{2(1 - \cos^2(x)) - \cos^2(x)}{\cos^2(x)} \ dx $$

$$ = \int \frac{2 - 2\cos^2(x) - \cos^2(x)}{\cos^2(x)} \ dx $$

$$ = \int \frac{2 - 3\cos^2(x)}{\cos^2(x)} \ dx $$

Now split the fraction:

$$ = \int \left( \frac{2}{\cos^2(x)} - \frac{3\cos^2(x)}{\cos^2(x)} \right) dx $$

$$ = \int \frac{2}{\cos^2(x)} \ dx - \int 3 \ dx $$

Apply linearity once more:

$$ 2 \cdot \int \frac{1}{\cos^2(x)} \ dx - 3 \cdot \int 1 \ dx $$

Both integrals are standard: \( \int \frac{1}{\cos^2(x)} \ dx = \tan(x) + C \), \( \int 1 \ dx = x + C \)

Putting it all together:

$$ 2 \tan(x) - 3x + c $$

Once again, we arrive at the same result.

And so on...

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration