Integral Calculation Exercise 12

We’re asked to find an antiderivative of the function

$$ F(x) = \int \frac{ \log^2[\sin(x)] }{\sin^2(x)} \cdot \sin(x) \ dt $$

with the condition

$$ F\left(\frac{\pi}{2}\right) = 1 $$

To enforce this condition, we set the lower limit of integration to \( \pi/2 \):

$$ F(x) = \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin^2(t)} \cdot \sin(t) \ dt $$

Since this definite integral equals zero when \( x = \pi/2 \), we add 1 to satisfy the initial condition:

$$ F(x) = 1 + \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin^2(t)} \cdot \sin(t) \ dt $$

This adjustment ensures that \( F(\pi/2) = 1 \) as required.

Let’s now compute the integral.

We apply the double-angle identity for sine: \(\sin(2t) = 2\sin(t)\cos(t)\).

$$ F(x) = 1 + \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin^2(t)} \cdot 2 \sin(t) \cos(t) \ dt $$

This allows us to cancel out a factor of \( \sin(t) \):

$$ F(x) = 1 + \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin(t)} \cdot 2 \cos(t) \ dt $$

$$ F(x) = 1 + 2 \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin(t)} \cos(t) \ dt $$

Notice that \( \frac{\cos(t)}{\sin(t)} \, dt \) is exactly the differential of \( \log[\sin(t)] \):

$$ F(x) = 1 + 2 \int_{\frac{\pi}{2}}^x \log^2[\sin(t)] \, d(\log[\sin(t)]) $$

Explanation. $$ \frac{d}{dt} \left[ \log(\sin(t)) \right] = \frac{1}{\sin(t)} \cdot \frac{d}{dt}[\sin(t)] = \frac{1}{\sin(t)} \cdot \cos(t) = \frac{\cos(t)}{\sin(t)} $$

Let \( s = \log(\sin(t)) \), so the integral becomes:

$$ F(x) = 1 + 2 \int_{\frac{\pi}{2}}^x s^2 \ ds $$

Now we evaluate the integral:

$$ F(x) = 1 + 2 \cdot \left[ \frac{s^3}{3} \right]_{\frac{\pi}{2}}^x $$

Substituting back \( s = \log(\sin(t)) \):

$$ F(x) = 1 + 2 \cdot \left[ \frac{ \log^3[\sin(t)] }{3} \right]_{\frac{\pi}{2}}^x $$

$$ F(x) = 1 + \frac{2}{3} \cdot \left[ \log^3[\sin(t)] \right]_{\frac{\pi}{2}}^x $$

Evaluating the difference:

$$ F(x) = 1 + \frac{2}{3} \cdot \left[ \log^3[\sin(x)] - \log^3\left[\sin\left(\frac{\pi}{2}\right)\right] \right] $$

Since \( \log^3[\sin(\pi/2)] = \log^3[1] = 0 \), we have:

$$ F(x) = 1 + \frac{2}{3} \cdot \log^3[\sin(x)] $$

And that concludes the solution.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration