Integral Calculation Exercise 12
We’re asked to find an antiderivative of the function
$$ F(x) = \int \frac{ \log^2[\sin(x)] }{\sin^2(x)} \cdot \sin(x) \ dt $$
with the condition
$$ F\left(\frac{\pi}{2}\right) = 1 $$
To enforce this condition, we set the lower limit of integration to \( \pi/2 \):
$$ F(x) = \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin^2(t)} \cdot \sin(t) \ dt $$
Since this definite integral equals zero when \( x = \pi/2 \), we add 1 to satisfy the initial condition:
$$ F(x) = 1 + \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin^2(t)} \cdot \sin(t) \ dt $$
This adjustment ensures that \( F(\pi/2) = 1 \) as required.
Let’s now compute the integral.
We apply the double-angle identity for sine: \(\sin(2t) = 2\sin(t)\cos(t)\).
$$ F(x) = 1 + \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin^2(t)} \cdot 2 \sin(t) \cos(t) \ dt $$
This allows us to cancel out a factor of \( \sin(t) \):
$$ F(x) = 1 + \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin(t)} \cdot 2 \cos(t) \ dt $$
$$ F(x) = 1 + 2 \int_{\frac{\pi}{2}}^x \frac{ \log^2[\sin(t)] }{\sin(t)} \cos(t) \ dt $$
Notice that \( \frac{\cos(t)}{\sin(t)} \, dt \) is exactly the differential of \( \log[\sin(t)] \):
$$ F(x) = 1 + 2 \int_{\frac{\pi}{2}}^x \log^2[\sin(t)] \, d(\log[\sin(t)]) $$
Explanation. $$ \frac{d}{dt} \left[ \log(\sin(t)) \right] = \frac{1}{\sin(t)} \cdot \frac{d}{dt}[\sin(t)] = \frac{1}{\sin(t)} \cdot \cos(t) = \frac{\cos(t)}{\sin(t)} $$
Let \( s = \log(\sin(t)) \), so the integral becomes:
$$ F(x) = 1 + 2 \int_{\frac{\pi}{2}}^x s^2 \ ds $$
Now we evaluate the integral:
$$ F(x) = 1 + 2 \cdot \left[ \frac{s^3}{3} \right]_{\frac{\pi}{2}}^x $$
Substituting back \( s = \log(\sin(t)) \):
$$ F(x) = 1 + 2 \cdot \left[ \frac{ \log^3[\sin(t)] }{3} \right]_{\frac{\pi}{2}}^x $$
$$ F(x) = 1 + \frac{2}{3} \cdot \left[ \log^3[\sin(t)] \right]_{\frac{\pi}{2}}^x $$
Evaluating the difference:
$$ F(x) = 1 + \frac{2}{3} \cdot \left[ \log^3[\sin(x)] - \log^3\left[\sin\left(\frac{\pi}{2}\right)\right] \right] $$
Since \( \log^3[\sin(\pi/2)] = \log^3[1] = 0 \), we have:
$$ F(x) = 1 + \frac{2}{3} \cdot \log^3[\sin(x)] $$
And that concludes the solution.
