Integral Calculation Exercise 29

We’re asked to evaluate the following integral:

$$ \int \frac{( \sin x - \cos x)^2}{\cos^2 x} \ dx $$

We begin by expanding the square in the numerator:

$$ \int \frac{\sin^2 x - 2 \sin x \cos x + \cos^2 x}{\cos^2 x} \ dx $$

Recalling the Pythagorean identity, \( \sin^2 x + \cos^2 x = 1 \), the integrand simplifies to:

$$ \int \frac{1 - 2 \sin x \cos x}{\cos^2 x} \ dx $$

We now split the expression into two separate terms:

$$ \int \left( \frac{1}{\cos^2 x} - \frac{2 \sin x \cos x}{\cos^2 x} \right) dx $$

$$ = \int \frac{1}{\cos^2 x} \ dx - \int \frac{2 \sin x}{\cos x} \ dx $$

Applying linearity:

$$ = \int \sec^2 x \ dx - 2 \int \tan x \ dx $$

The first integral is standard:

$$ \int \sec^2 x \ dx = \tan x + C $$

So we have:

$$ \tan x + C - 2 \int \tan x \ dx $$

To compute the second integral, we let t = \cos x and apply substitution:

$$ t = \cos x \quad \Rightarrow \quad dt = -\sin x \ dx $$

Solving for \( dx \):

$$ dx = - \frac{1}{\sin x} \ dt $$

Substituting into the integral:

$$ -2 \int \frac{\sin x}{\cos x} \cdot \frac{1}{\sin x} \cdot (-1) \ dt = 2 \int \frac{1}{\cos x} \ dt $$

That gives us:

$$ \tan x + C + 2 \int \sec x \ dt $$

Now, this step reveals a subtle issue: the variable of integration has been changed to \( t \), but the integrand is still expressed in terms of \( x \). So, strictly speaking, substitution here is unnecessary. A more direct approach is simply to integrate \( \tan x \):

$$ \int \tan x \ dx = -\log |\cos x| + C $$

Thus, we find:

$$ \tan x - 2(-\log |\cos x|) + C = \tan x + 2 \log |\cos x| + C $$

Therefore, the final result is:

$$ \int \frac{( \sin x - \cos x)^2}{\cos^2 x} \ dx = \tan x + 2 \log |\cos x| + C $$

And that completes the solution.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration