Equation of a Hyperbola Given an Asymptote and a Point

To find the equation of a hyperbola centered at the origin, given the equation of an asymptote $ y = \frac{b}{a} x $ and the coordinates $ P(x_0;y_0) $ of a point on the hyperbola, follow these steps:

First, identify the transverse axis, which is the axis along which the foci are located, to determine the standard form of the hyperbola's equation:

  • If the transverse axis is the x-axis, the equation of the hyperbola is $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$
  • If the transverse axis is the y-axis, the equation of the hyperbola is $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$

Next, set up a system of equations using the standard form of the hyperbola and the asymptote equation:

$$ \begin{cases} y = \pm \frac{b}{a} x \\ \\ \frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1 \end{cases} $$

Substitute $ x $ and $ y $ with the coordinates of the given point $ P(x_0;y_0) $ in the standard form equation:

$$ \begin{cases} y = \pm \frac{b}{a} x \\ \\ \frac{x_0^2}{a^2} - \frac{y_0^2}{b^2} = \pm 1 \end{cases} $$

By solving this system, you can determine the lengths of the semi-axes $ a $ and $ b $, which are necessary to write the equation of the hyperbola.

    A Practical Example

    Let's find the equation of a hyperbola centered at the origin with foci on the x-axis that passes through the point $ P\left( - \frac{5}{2}, -1 \right) $ and has an asymptote given by $ y= \frac{2}{\sqrt{5}} x $.

    Since the foci are on the x-axis, the standard form of the hyperbola's equation is:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$

    Substituting the coordinates of the point $ P\left( - \frac{5}{2}, -1 \right) $ into the equation, we have:

    $$ \frac{\left( - \frac{5}{2} \right)^2}{a^2} - \frac{(-1)^2}{b^2} = 1 $$

    $$ \frac{\frac{25}{4}}{a^2} - \frac{1}{b^2} = 1 $$

    $$ \frac{25}{4a^2} - \frac{1}{b^2} = 1 $$

    Next, we set up a system of equations using the asymptote and the hyperbola equations with the known point:

    $$ \begin{cases} y= \frac{2}{\sqrt{5}} x \\ \\ \frac{25}{4a^2} - \frac{1}{b^2} = 1 \end{cases} $$

    Given that the asymptote can be written as $ y = \frac{b}{a} x $, we can write:

    $$ \begin{cases} \frac{b}{a} x = \frac{2}{\sqrt{5}} x \\ \\ \frac{25}{4a^2} - \frac{1}{b^2} = 1 \end{cases} $$

    $$ \begin{cases} \frac{b}{a} = \frac{2}{\sqrt{5}} \\ \\ \frac{25}{4a^2} - \frac{1}{b^2} = 1 \end{cases} $$

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} a \\ \\ \frac{25}{4a^2} - \frac{1}{b^2} = 1 \end{cases} $$

    Substituting $ b = \frac{2}{\sqrt{5}} a $ into the second equation gives:

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} a \\ \\ \frac{25}{4a^2} - \frac{1}{\left( \frac{2}{\sqrt{5}} a \right)^2} = 1 \end{cases} $$

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} a \\ \\ \frac{25}{4a^2} - \frac{1}{\frac{4a^2}{5}} = 1 \end{cases} $$

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} a \\ \\ \frac{25}{4a^2} - \frac{5}{4a^2} = 1 \end{cases} $$

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} a \\ \\ \frac{25 - 5}{4a^2} = 1 \end{cases} $$

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} a \\ \\ \frac{20}{4a^2} = 1 \end{cases} $$

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} a \\ \\ \frac{5}{a^2} = 1 \end{cases} $$

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} a \\ \\ a^2 = 5 \end{cases} $$

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} a \\ \\ a = \sqrt{5} \end{cases} $$

    With $ a = \sqrt{5} $ determined, substitute this value into the first equation to find $ b $:

    $$ \begin{cases} b = \frac{2}{\sqrt{5}} \cdot \sqrt{5} \\ \\ a = \sqrt{5} \end{cases} $$

    $$ \begin{cases} b = 2 \\ \\ a = \sqrt{5} \end{cases} $$

    Now that we know the semi-axes $ a = \sqrt{5} $ and $ b=2 $, we can complete the equation of the hyperbola:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$

    $$ \frac{x^2}{(\sqrt{5})^2} - \frac{y^2}{2^2} = 1 $$

    $$ \frac{x^2}{5} - \frac{y^2}{4} = 1 $$

    This is the equation of the hyperbola centered at the origin with its foci on the x-axis, passing through the point $ P\left( - \frac{5}{2}, -1 \right) $ and having an asymptote $ y = \frac{2}{\sqrt{5}} x $.

    Graph of the hyperbola

    And so on.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Hyperbola

    How to Determine the Equation of a Hyperbola Given: