Equation of a Hyperbola Given the Eccentricity and a Vertex

To derive the equation of a hyperbola centered at the origin, given the eccentricity and one vertex $ A(a;0) $ or $ B(0;b) $, follow these steps:

  • If the foci lie on the x-axis, the equation of the hyperbola is $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$ and the eccentricity is given by $$ e = \frac{c}{a} $$
  • If the foci lie on the y-axis, the equation of the hyperbola is $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$ and the eccentricity is $$ e = \frac{c}{b} $$

In both cases, the relationship between the semi-axes $ a $, $ b $, and the distance from the center to a focus $ c $ is:

$$ c^2 = a^2 + b^2 $$

Note: If it's not clear from the problem which axis contains the foci, you should consider both scenarios: the transverse axis being either the x-axis or the y-axis.

    A Practical Example

    Let's consider a hyperbola centered at the origin with a non-real vertex at $ A(-2;0) $ and an eccentricity of $ e = \frac{3 \sqrt{5}}{5} $.

    Since the vertex $ A(-2;0) $ is on the x-axis, and the problem specifies that it is "non-real," the real axis (which contains the foci) must be the y-axis.

    When the real (transverse) axis is the y-axis, the equation of the hyperbola is:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$

    The eccentricity of the hyperbola is defined as:

    $$ e = \frac{c}{b} $$

    We can now set up the system of equations:

    $$ \begin{cases} e = \frac{c}{b} \\ \\ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \end{cases} $$

    Given the eccentricity $ e = \frac{3 \sqrt{5}}{5} $ and the vertex coordinates $ A(a;0) = (2;0) $, where $ a = 2 $, we have:

    $$ \begin{cases} \frac{3 \sqrt{5}}{5} = \frac{c}{b} \\ \\ \frac{x^2}{2^2} - \frac{y^2}{b^2} = 1 \end{cases} $$

    $$ \begin{cases} \frac{3 \sqrt{5}}{5} = \frac{c}{b} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    Knowing that $ c^2 = a^2 + b^2 $, we can express $ c $ as $ c = \sqrt{a^2 + b^2} $ with $ a = 2 $:

    $$ \begin{cases} \frac{3 \sqrt{5}}{5} = \frac{\sqrt{a^2 + b^2}}{b} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{3 \sqrt{5}}{5} = \frac{\sqrt{2^2 + b^2}}{b} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{3 \sqrt{5}}{5} = \frac{\sqrt{4 + b^2}}{b} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    Next, we square both sides of the first equation:

    $$ \begin{cases} \left( \frac{3 \sqrt{5}}{5} \right)^2 = \left( \frac{\sqrt{4 + b^2}}{b} \right)^2 \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{9 \cdot 5}{25} = \frac{4 + b^2}{b^2} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{9}{5} = \frac{4}{b^2} + \frac{b^2}{b^2} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{9}{5} = \frac{4}{b^2} + 1 \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{9}{5} - 1 = \frac{4}{b^2} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{9 - 5}{5} = \frac{4}{b^2} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{4}{5} = \frac{4}{b^2} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} b^2 = \frac{5}{4} \times 4 \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} b^2 = 5 \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \sqrt{b^2} = \sqrt{5} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} b = \sqrt{5} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = -1 \end{cases} $$

    Now that we know $ b = \sqrt{5} $, we can substitute it back into the second equation:

    $$ \begin{cases} b = \sqrt{5} \\ \\ \frac{x^2}{4} - \frac{y^2}{(\sqrt{5})^2} = -1 \end{cases} $$

    $$ \begin{cases} b = \sqrt{5} \\ \\ \frac{x^2}{4} - \frac{y^2}{5} = -1 \end{cases} $$

    Therefore, the equation of the hyperbola centered at the origin with a non-real vertex at $ A(-2;0) $ and an eccentricity of $ e = \frac{3 \sqrt{5}}{5} $ is:

    $$ \frac{x^2}{4} - \frac{y^2}{5} = -1 $$

    Here is the graphical representation:

    hyperbola graph

    And so on.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Hyperbola

    How to Determine the Equation of a Hyperbola Given: