Equation of a Hyperbola Passing Through Two Points

To find the equation of a hyperbola centered at the origin that passes through two given points $ P_1(x_1;y_1) $ and $ P_2(x_2;y_2) $, follow these steps:

First, determine the transverse axis, the axis along which the foci lie:

  • If the transverse axis is the x-axis, the standard equation of the hyperbola is $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$
  • If the transverse axis is the y-axis, the standard equation of the hyperbola is $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$

If it’s unclear which axis is the transverse one, you should consider both possibilities.

Next, substitute the coordinates of the known points $ P_1(x_1;y_1) $ and $ P_2(x_2;y_2) $ into the standard equation, creating a system of equations to solve for $ a^2 $ and $ b^2 $.

    A Practical Example

    Let’s consider a hyperbola with foci along the y-axis that passes through the points $ P_1(1; \frac{\sqrt{5}}{2}) $ and $ P_2(4;\sqrt{5}) $.

    Since the foci are on the y-axis, the standard equation of the hyperbola is:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$

    We then create a system of equations by substituting the coordinates of the given points $ P_1(1; \frac{\sqrt{5}}{2}) $ and $ P_2(4;\sqrt{5}) $:

    $$ \begin{cases} \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = -1 \\ \\ \frac{x_2^2}{a^2} - \frac{y_2^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{1^2}{a^2} - \frac{(\frac{\sqrt{5}}{2})^2}{b^2} = -1 \\ \\ \frac{4^2}{a^2} - \frac{(\sqrt{5})^2}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{1}{a^2} - \frac{\frac{5}{4}}{b^2} = -1 \\ \\ \frac{16}{a^2} - \frac{5}{b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{1}{a^2} - \frac{5}{4} \cdot \frac{1}{b^2} = -1 \\ \\ \frac{16b^2-5a^2}{a^2b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{1}{a^2} - \frac{5}{4b^2} = -1 \\ \\ \frac{16b^2-5a^2}{a^2b^2} = -1 \end{cases} $$

    $$ \begin{cases} \frac{4b^2-5a^2}{4a^2b^2} = -1 \\ \\ 16b^2-5a^2 = -a^2b^2 \end{cases} $$

    $$ \begin{cases} 4b^2-5a^2 = -4a^2b^2 \\ \\ 16b^2-5a^2 = -a^2b^2 \end{cases} $$

    Now, solve the system by isolating $ b^2 $ in the first equation and substituting it into the second equation.

    $$ \begin{cases} 4b^2 + 4a^2b^2 = 5a^2 \\ \\ 16b^2-5a^2 = -a^2b^2 \end{cases} $$

    $$ \begin{cases} b^2 \cdot (4 + 4a^2) = 5a^2 \\ \\ 16b^2-5a^2 = -a^2b^2 \end{cases} $$

    $$ \begin{cases} b^2 = \frac{5a^2}{4 + 4a^2} \\ \\ 16b^2-5a^2 = -a^2b^2 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{5a^2}{4 + 4a^2} } \\ \\ 16b^2-5a^2 = -a^2b^2 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{5a^2}{4 + 4a^2} } \\ \\ 16 \cdot \left(\sqrt{ \frac{5a^2}{4 + 4a^2} }\right)^2 - 5a^2 = -a^2 \cdot \left(\sqrt{ \frac{5a^2}{4 + 4a^2} }\right)^2 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{5a^2}{4 + 4a^2} } \\ \\ 16 \cdot \frac{5a^2}{4 + 4a^2} -5a^2 = -a^2 \cdot \frac{5a^2}{4 + 4a^2} \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{5a^2}{4 + 4a^2} } \\ \\ \frac{80a^2 - 5a^2 \cdot (4 + 4a^2)}{4 + 4a^2} = -\frac{5a^4}{4 + 4a^2} \end{cases} $$

    Multiply both sides of the second equation by $ 4+4a^2 $ and simplify:

    $$ \begin{cases} b = \sqrt{ \frac{5a^2}{4 + 4a^2} } \\ \\ 80a^2 - 5a^2 \cdot (4 + 4a^2) = -5a^4 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{5a^2}{4 + 4a^2} } \\ \\ 80a^2 - 20a^2 - 20a^4 + 5a^4 = 0 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{5a^2}{4 + 4a^2} } \\ \\ -15a^4 + 60a^2 = 0 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{5a^2}{4 + 4a^2} } \\ \\ a^2(60-15a^2) = 0 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{5a^2}{4 + 4a^2} } \\ \\ 3a^2(20-5a^2) = 0 \end{cases} $$

    The second equation has two roots: $ a=0 $ and $ a =  \sqrt{\frac{20}{5}} = \sqrt{4} = 2 $.

    Since a length cannot be zero, we discard the zero value and consider only the positive root $ a=2 $.

    With the length of the semi-transverse axis now known as $ a=2 $, we substitute this into the first equation to find the corresponding value of $ b $:

    $$ \begin{cases} b = \sqrt{ \frac{5 \cdot 2^2}{4 + 4 \cdot 2^2} } \\ \\ a = 2 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{5 \cdot 4}{4 + 4 \cdot 4} } \\ \\ a = 2 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{20}{4 + 16} } \\ \\ a = 2 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ \frac{20}{20} } \\ \\ a = 2 \end{cases} $$

    $$ \begin{cases} b = \sqrt{ 1 } \\ \\ a = 2 \end{cases} $$

    $$ \begin{cases} b = 1 \\ \\ a = 2 \end{cases} $$

    Therefore, the semi-axes of the hyperbola are $ a =2 $ and $ b = 1 $.

    Substituting these values into the standard equation of the hyperbola gives:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$

    $$ \frac{x^2}{2^2} - \frac{y^2}{1^2} = -1 $$

    $$ \frac{x^2}{4} - y^2 = -1 $$

    This is the equation of the hyperbola with foci on the y-axis that passes through the points $ P_1(1; \frac{\sqrt{5}}{2}) $ and $ P_2(4;\sqrt{5}) $.

    The hyperbola equation

    And so on.

     

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Hyperbola

    How to Determine the Equation of a Hyperbola Given: