Finding the Equation of a Hyperbola Given an Asymptote and a Focus

To find the equation of a hyperbola centered at the origin, knowing the location of a focus helps determine whether the transverse axis lies along the x-axis or the y-axis.

  • If the focus is at $ F(c;0) $, the transverse axis is the x-axis, and the equation of the hyperbola is $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$
  • If the focus is at $ F(0;c) $, the transverse axis is the y-axis, and the equation of the hyperbola becomes $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$

In either case, the equations for the asymptotes of the hyperbola are:

$$ y = \pm \frac{b}{a} x $$

The relationship between the semi-axes $ a $ and $ b $ and the distance $ c $ from the center to the focus is always:

$$ c^2 = a^2 + b^2 $$

With these elements, you can determine the equation of the hyperbola.

    A Practical Example

    Let’s consider a hyperbola with a focus at

    $$ F(c;0) = F(5;0) $$

    and an asymptote given by

    $$ y = \sqrt{\frac{2}{3}} x $$

    Since the focus is on the x-axis, the equation of the hyperbola is:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$

    To find the semi-axes $ a $ and $ b $, we use a system of equations involving the asymptote equation and the relationship between the semi-axes.

    $$ \begin{cases} y = \pm \frac{b}{a} x \\ \\ c^2 = a^2 + b^2 \end{cases} $$

    We know the equation of the asymptote $ y = \sqrt{\frac{2}{3}} x $ and the distance from the center to the focus, $ c = 5 $.

    $$ \begin{cases} \sqrt{\frac{2}{3}} x = \frac{b}{a} x \\ \\ 5^2 = a^2 + b^2 \end{cases} $$

    Dividing both sides of the first equation by $ x $, we get:

    $$ \begin{cases} \sqrt{\frac{2}{3}} = \frac{b}{a} \\ \\ 25 = a^2 + b^2 \end{cases} $$

    We can now solve for $ b $ in the first equation:

    $$ \begin{cases} b = \sqrt{\frac{2}{3}} a \\ \\ 25 = a^2 + b^2 \end{cases} $$

    Substituting $ b $ into the second equation gives:

    $$ \begin{cases} b = \sqrt{\frac{2}{3}} a \\ \\ 25 = a^2 + \left(\sqrt{\frac{2}{3}} a\right)^2 \end{cases} $$

    $$ \begin{cases} b = \sqrt{\frac{2}{3}} a \\ \\ 25 = a^2 + \frac{2}{3} a^2 \end{cases} $$

    $$ \begin{cases} b = \sqrt{\frac{2}{3}} a \\ \\ 25 = \frac{5a^2}{3} \end{cases} $$

    $$ \begin{cases} b = \sqrt{\frac{2}{3}} a \\ \\ a^2 = 25 \cdot \frac{3}{5} \end{cases} $$

    $$ \begin{cases} b = \sqrt{\frac{2}{3}} a \\ \\ a^2 = 15 \end{cases} $$

    $$ \begin{cases} b = \sqrt{\frac{2}{3}} a \\ \\ a = \sqrt{15} \end{cases} $$

    Once we have $ a = \sqrt{15} $, we can substitute it back into the first equation to find $ b $:

    $$ \begin{cases} b = \sqrt{\frac{2}{3}} \sqrt{15} \\ \\ a = \sqrt{15} \end{cases} $$

    $$ \begin{cases} b = \sqrt{\frac{2}{3} \cdot 15} \\ \\ a = \sqrt{15} \end{cases} $$

    $$ \begin{cases} b = \sqrt{10} \\ \\ a = \sqrt{15} \end{cases} $$

    So, the lengths of the semi-axes are $ a = \sqrt{15} $ and $ b = \sqrt{10} $, which can be substituted into the standard equation of the hyperbola.

    $$ \frac{x^2}{(\sqrt{15})^2} - \frac{y^2}{(\sqrt{10})^2} = 1 $$

    $$ \frac{x^2}{15} - \frac{y^2}{10} = 1 $$

    This is the equation of the hyperbola with a focus at $ F(c;0) = F(5;0) $ and an asymptote $ y = \sqrt{\frac{2}{3}} x $.

    example

    And that's how you derive the equation.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Hyperbola

    How to Determine the Equation of a Hyperbola Given: