Finding the Equation of a Hyperbola Given a Vertex and a Tangent Line

To determine the equation of a hyperbola centered at the origin, given a tangent line and a vertex, follow these steps:

  • First, identify the transverse axis (the axis along which the foci lie) from the problem data. If the transverse axis is the x-axis, the equation of the hyperbola is $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1   $$ If the transverse axis is the y-axis, the equation of the hyperbola is $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1   $$
  • Set up a system of equations using the standard form of the hyperbola and the equation of the tangent line: $$ \begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1 \\ \\ a'x + b'y + c' = 0 \end{cases} $$
  • Substitute the known vertex into the system and solve for the missing vertex, keeping in mind that the condition of tangency is met when the discriminant is zero: $ \Delta = 0 $

    A Practical Example

    Consider a hyperbola centered at the origin that is tangent to the line $ 2x-3y-2=0 $ and has a real vertex at $ A(2;0) $.

    Given that the real vertex is at $ A(2;0) $, we deduce that $ a=2 $, and the transverse axis lies along the x-axis. Therefore, the equation of the hyperbola is:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$

    $$ \frac{x^2}{2^2} - \frac{y^2}{b^2} = 1 $$

    $$ \frac{x^2}{4} - \frac{y^2}{b^2} = 1 $$

    Next, we set up a system of equations with the hyperbola's equation and the equation of the line to find the point of tangency:

    $$ \begin{cases} 2x-3y - 2 = 0 \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = 1 \end{cases} $$

    To confirm the tangency, we substitute the equation of the line into the hyperbola's equation and verify that we obtain a single solution, meaning the line touches the hyperbola at exactly one point.

    $$ \begin{cases} y = \frac{2x-2}{3} \\ \\ \frac{x^2}{4} - \frac{y^2}{b^2} = 1 \end{cases} $$

    Substituting \(y\) into the hyperbola's equation:

    $$ \begin{cases} y = \frac{2x-2}{3} \\ \\ \frac{x^2}{4} - \frac{\left( \frac{2x-2}{3}  \right)^2}{b^2} = 1 \end{cases} $$

    $$ \begin{cases} y = \frac{2x-2}{3} \\ \\ \frac{x^2}{4} - \frac{ \frac{4x^2 -8x +4 }{9}  }{b^2} = 1 \end{cases} $$

    $$ \begin{cases} y = \frac{2x-2}{3} \\ \\ \frac{x^2}{4} -  \frac{4x^2 -8x +4 }{9} \cdot \frac{1}{b^2} = 1 \end{cases} $$

    $$ \begin{cases} y = \frac{2x-2}{3} \\ \\ \frac{x^2}{4} -  \frac{4x^2 -8x +4 }{9b^2}  = 1 \end{cases} $$

    $$ \begin{cases} y = \frac{2x-2}{3} \\ \\  \frac{9b^2x^2 + 4 \cdot (-4x^2 +8x -4)= }{4 \cdot 9b^2}  = 1 \end{cases} $$

    $$ \begin{cases} y = \frac{2x-2}{3} \\ \\  \frac{9b^2x^2 -16x^2 +32x -16 }{36b^2}  = 1 \end{cases} $$

    $$ \begin{cases} y = \frac{2x-2}{3} \\ \\ 9b^2x^2 -16x^2 +32x -16   = 36b^2 \end{cases} $$

    Let's rearrange the terms:

    $$ \begin{cases} y = \frac{2x-2}{3} \\ \\ (9b^2 -16)x^2 +32x  -16   - 36b^2 = 0 \end{cases} $$

    For the line to be tangent to the hyperbola, this quadratic equation must have a single solution, which means the discriminant must be zero.

    The discriminant of a quadratic equation \(Ax^2 + Bx + C = 0\) is given by \(B^2 - 4AC\).

    $$ \Delta = B^2 - 4AC = 0 $$

    In this case, $ A = 9b^2 - 16, \quad B = 32, \quad C = -16 - 36b^2 $.

    $$ 32^2 - 4 \cdot (9b^2 -16 ) \cdot (-16 - 36b^2 ) = 0 $$

    $$ 1024 - 4 \cdot (9b^2 -16 ) \cdot (-16 - 36b^2 ) = 0 $$

    We can simplify by dividing both sides of the equation by 4:

    $$ \frac{1}{4} \cdot [ 1024 - 4 \cdot (9b^2 -16 ) \cdot (-16 - 36b^2 ) ] = \frac{1}{4} \cdot 0 $$

    $$ 256 - (9b^2 -16 ) \cdot (-16 - 36b^2 ) = 0 $$

    $$ 256 - 9b^2 \cdot (-16 - 36b^2 ) + 16 \cdot (-16 - 36b^2 ) = 0 $$

    $$ 256 + 144b^2 + 324b^4 - 256 - 576b^2 = 0 $$

    $$ 324b^4 - 432b^2 = 0 $$

    $$ b^2 ( 324b^2 - 432 ) = 0 $$

    The discriminant $ \Delta = 0 $ when $ b^2 = 0 $ or $ b^2 = \frac{432}{324} = \frac{4}{3} $.

    We disregard $ b^2 = 0 $ since the semi-axis of the hyperbola cannot be zero, leaving us with $ b^2 = \frac{4}{3} $.

    $$ b^2 = \frac{4}{3} $$

    $$ \sqrt{b^2} = \sqrt{ \frac{4}{3} } $$

    $$ b = 2 \sqrt{ \frac{1}{3} } $$

    Now that we know the lengths of the semi-axes, $ a = 2 $ and $ b = 2 \sqrt{ \frac{1}{3} } $, we substitute them into the standard equation of the hyperbola:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$

    $$ \frac{x^2}{2^2} - \frac{y^2}{( 2 \sqrt{ \frac{1}{3} } )^2} = 1 $$

    $$ \frac{x^2}{4} - \frac{y^2}{ \frac{4}{3} } = 1 $$

    $$ \frac{x^2}{4} - y^2 \cdot \frac{3}{4} = 1 $$

    $$ \frac{x^2}{4} - \frac{3y^2}{4} = 1 $$

    We multiply both sides of the equation by 4:

    $$ 4 \cdot ( \frac{x^2}{4} - \frac{3y^2}{4} )= 4 $$

    $$ x^2 - 3y^2 = 4 $$

    This is the equation of the hyperbola centered at the origin, tangent to the line $ 2x-3y-2=0 $, with a real vertex at $ A(2;0) $.

    Equation of the hyperbola

    And that's how it's done.

     

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Hyperbola

    How to Determine the Equation of a Hyperbola Given: