Tangent Lines to the Hyperbola

To find the tangent lines to a hyperbola that pass through a point P(x0, y0), we create a system using the hyperbola's equation and the equation of the family of lines passing through point P.

$$ \begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1 \\ \\ y-y_0 = m (x-x_0) \end{cases} $$

This system allows us to find a quadratic equation in the variable y.

To determine the tangent lines, we impose the tangency condition $ \Delta = 0 $ on the quadratic equation and solve for the slope m.

  • If the equation has two distinct real solutions m1≠m2, there are two tangent lines to the hyperbola passing through the point P(x0, y0), indicating that this point is outside the hyperbola.
    Tangent lines passing through an external point P
  • If the equation has a single real solution m1=m2, there is one tangent line to the hyperbola passing through the point P(x0, y0), indicating that this point lies on the hyperbola.
    Tangent line at point P on the hyperbola
  • If the equation has no real solutions, there are no tangent lines to the hyperbola passing through the point P(x0, y0).
    No tangent lines

    Practical Example

    Consider the equation

    $$ \frac{x^2}{16} - \frac{y^2}{16} = 1 $$

    We need to find the tangent line(s) passing through the point $ P\left( \frac{16}{5}, 0 \right) $.

    Example

    First, we write a system with the equation of the hyperbola and the equation of the family of lines passing through $ P\left( \frac{16}{5}, 0 \right) $.

    $$ \begin{cases} \frac{x^2}{16} - \frac{y^2}{16} = 1 \\ \\ (y-y_0)=m(x-x_0) \end{cases} $$

    In this case, the coordinates of the point are $ x_0 = \frac{16}{5} $ and $ y_0 = 0 $.

    $$ \begin{cases} \frac{x^2}{16} - \frac{y^2}{16} = 1 \\ \\ (y-0)=m(x-\frac{16}{5}) \end{cases} $$

    $$ \begin{cases} \frac{x^2}{16} - \frac{y^2}{16} = 1 \\ \\ y=mx-\frac{16m}{5} \end{cases} $$

    Next, we solve for the variable y in both equations:

    $$ \begin{cases} y^2 = 16 \left( \frac{x^2}{16} -1 \right) \\ \\ y=mx-\frac{16m}{5} \end{cases} $$

    $$ \begin{cases} y^2 = x^2 - 16 \\ \\ y=mx-\frac{16m}{5} \end{cases} $$

    $$ \begin{cases} y = \sqrt{ x^2 - 16 } \\ \\ y=mx-\frac{16m}{5} \end{cases} $$

    The resulting equation is:

    $$ \sqrt{ x^2 - 16 } = mx-\frac{16m}{5} $$

    $$ \left( \sqrt{ x^2 - 16 } \right)^2 = \left( mx-\frac{16m}{5} \right)^2 $$

    $$ x^2 - 16 = m^2x^2 - 2 \cdot mx \cdot \frac{16m}{5} + \left( \frac{16m}{5} \right)^2 $$

    $$ x^2 - 16 = m^2x^2 - \frac{32m^2x}{5} + \frac{256m^2}{25} $$

    $$ x^2 - 16 - m^2x^2 + \frac{32m^2x}{5} - \frac{256m^2}{25} = 0 $$

    $$ x^2 (1- m^2 ) + x \left( \frac{32m^2}{5} \right) - 16 - \frac{256m^2}{25} = 0 $$

    This is a quadratic equation in x.

    We apply the tangency condition $ \Delta = 0 $.

    $$ \Delta = b^2 - 4ac = 0 $$

    In this case, $ a =1- m^2 $, $ b = \frac{32m^2}{5} $, and $ c = - 16 - \frac{256m^2}{25} $.

    $$ \left( \frac{32m^2}{5} \right)^2 - 4 \cdot (1-m^2) \cdot \left( - 16 - \frac{256m^2}{25} \right) = 0 $$

    $$ \frac{1024m^4}{25} - \left(4-4m^2\right) \cdot \left( - 16 - \frac{256m^2}{25} \right) = 0 $$

    $$ \frac{1024m^4}{25} - 4 \cdot \left( - 16 - \frac{256m^2}{25} \right) + 4m^2 \cdot \left( - 16 - \frac{256m^2}{25} \right) = 0 $$

    $$ \require{cancel} \cancel{ \frac{1024m^4}{25} } + 64 + \frac{1024m^2}{25} - 64m^2 - \cancel{ \frac{1024m^4}{25} } = 0 $$

    $$ \frac{1024m^2-1600m^2}{25} + 64 = 0 $$

    $$ - \frac{576m^2}{25} = -64 $$

    $$ m^2 = \frac{64 \cdot 25}{576} $$

    $$ m^2 = \frac{1600}{576} $$

    $$ m^2 = \frac{800}{288} $$

    $$ m^2 = \frac{400}{144} $$

    $$ m^2 = \frac{200}{72} $$

    $$ m^2 = \frac{100}{36} $$

    $$ m^2 = \frac{25}{9} $$

    $$ \sqrt{ m^2 } = \sqrt{ \frac{25}{9} } $$

    $$ m = \pm \frac{5}{3} $$

    Once the slope is found, we substitute it back into the equation of the family of lines:

    $$ y=mx-\frac{16m}{5} $$

    We need to consider both values of the slope:

    • For $ m = \frac{5}{3} $ $$ y = \frac{5}{3} x - \frac{16 \cdot \frac{5}{3}}{5} $$ $$ y = \frac{5}{3} x - \frac{16 \cdot \frac{5}{3}}{5} $$ $$ y = \frac {5}{3} x - \frac{80}{15} $$ $$ y = \frac{5}{3} x - \frac{16}{3} $$ $$ y - \frac{5}{3} x + \frac{16}{3} = 0 $$ $$ 3 \cdot \left( y - \frac{5}{3} x + \frac{16}{3} \right) = 3 \cdot 0 $$ $$ 3y - 5x + 16 = 0 $$
    • For $ m = - \frac{5}{3} $ $$ y = - \frac{5}{3} x - \frac{16 \cdot \left( - \frac{5}{3} \right)}{5} $$ $$ y = - \frac{5}{3} x + \frac{80}{15} $$ $$ y = - \frac{5}{3} x + \frac{16}{3} $$ $$ y + \frac{5}{3} x - \frac{16}{3} = 0 $$ $$ 3 \cdot \left( y + \frac{5}{3} x - \frac{16}{3} \right) = 3 \cdot 0 $$ $$ 3y + 5x - 16 = 0 $$

    Here is the graph of the tangent lines to the hyperbola passing through the point $ P\left( \frac{16}{5}, 0 \right) $.

    Graph

    And so on.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Hyperbola

    How to Determine the Equation of a Hyperbola Given: