Finding the Equation of a Hyperbola Given a Point and Eccentricity

To determine the equation of a hyperbola centered at the origin, given the coordinates of a point $ P(x_0;y_0) $ and the eccentricity $ e $, follow these steps:

First, identify the transverse axis, which is the axis where the foci are located, using the additional information provided in the problem.

  • If the transverse axis is the x-axis, the equation of the hyperbola is: $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $$ and the eccentricity is given by the formula $$ e = \frac{c}{a} $$
  • If the transverse axis is the y-axis, the equation of the hyperbola is: $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$ and the eccentricity is given by the formula $$ e = \frac{c}{b} $$

Next, substitute the coordinates of the point $ P(x_0;y_0) $ into the hyperbola equation. Then, solve the resulting system of equations, which includes the eccentricity, to find the lengths of the transverse and conjugate axes.

    An Example

    Let’s consider a hyperbola centered at the origin that passes through the point $ P(-6; 2 \sqrt{15} )$ and has an eccentricity of $ e= \frac{\sqrt{7}}{2} $. In this case, the transverse axis, where the foci are located, is the y-axis.

    Since the transverse axis is the y-axis, the equation of the hyperbola is:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$

    The eccentricity is given by:

    $$ e = \frac{c}{b} $$

    We set up the following system of equations:

    $$ \begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \\ \\ e = \frac{c}{b} \end{cases} $$

    Substituting the coordinates of the point $ P(-6; 2 \sqrt{15} )$ into the hyperbola equation gives:

    $$ \begin{cases} \frac{(-6)^2}{a^2} - \frac{(2 \sqrt{15})^2}{b^2} = -1 \\ \\ e = \frac{c}{b} \end{cases} $$

    This simplifies to:

    $$ \begin{cases} \frac{36}{a^2} - \frac{60}{b^2} = -1 \\ \\ e = \frac{c}{b} \end{cases} $$

    Now, substituting the given eccentricity $ e= \frac{\sqrt{7}}{2} $ into the system, we get:

    $$ \begin{cases} \frac{36}{a^2} - \frac{60}{b^2} = -1 \\ \\ \frac{\sqrt{7}}{2} = \frac{c}{b} \end{cases} $$

    Since for a hyperbola $ c^2 = a^2 + b^2 $, we can express $ c $ as $ \sqrt{a^2 + b^2} $:

    $$ \begin{cases} \frac{36}{a^2} - \frac{60}{b^2} = -1 \\ \\ \frac{\sqrt{7}}{2} = \sqrt{ \frac{a^2 + b^2}{b^2} } \end{cases} $$

    This further simplifies to:

    $$ \begin{cases} \frac{36}{a^2} - \frac{60}{b^2} = -1 \\ \\ \frac{\sqrt{7}}{2} = \sqrt{ 1 + \frac{a^2}{b^2} } \end{cases} $$

    Squaring both sides of the second equation yields:

    $$ \begin{cases} \frac{36}{a^2} - \frac{60}{b^2} = -1 \\ \\ \frac{7}{4} = 1 + \frac{a^2}{b^2} \end{cases} $$

    Solving for $ \frac{a^2}{b^2} $, we get:

    $$ \begin{cases} \frac{36}{a^2} - \frac{60}{b^2} = -1 \\ \\ \frac{a^2}{b^2} = \frac{3}{4} \end{cases} $$

    Substituting $ a^2 = \frac{3}{4} \cdot b^2 $ into the first equation gives:

    $$ \begin{cases} \frac{36}{\frac{3}{4} \cdot b^2} - \frac{60}{b^2} = -1 \\ \\ a^2 = \frac{3}{4} \cdot b^2 \end{cases} $$

    Rewriting the first equation:

    $$ \begin{cases} \frac{144}{3b^2} - \frac{60}{b^2} = -1 \\ \\ a^2 = \frac{3}{4} \cdot b^2 \end{cases} $$

    $$ \begin{cases} \frac{144 - 180}{3b^2} = -1 \\ \\ a^2 = \frac{3}{4} \cdot b^2 \end{cases} $$

    $$ \begin{cases} \frac{-36}{3b^2} = -1 \\ \\ a^2 = \frac{3}{4} \cdot b^2 \end{cases} $$

    $$ \begin{cases} \frac{-12}{b^2} = -1 \\ \\ a^2 = \frac{3}{4} \cdot b^2 \end{cases} $$

    Solving for $ b^2 $, we find:

    $$ \begin{cases} b^2 = 12 \\ \\ a^2 = \frac{3}{4} \cdot b^2 \end{cases} $$

    Taking the square root:

    $$ \begin{cases} b = \sqrt{12} \\ \\ a^2 = \frac{3}{4} \cdot b^2 \end{cases} $$

    $$ \begin{cases} b = 2 \sqrt{3} \\ \\ a^2 = \frac{3}{4} \cdot b^2 \end{cases} $$

    Now that we have the length of the transverse axis $ b = 2 \sqrt{3} $, substitute it back into the equation for $ a $:

    $$ \begin{cases} b = 2 \sqrt{3} \\ \\ a^2 = \frac{3}{4} \cdot (2 \sqrt{3})^2 \end{cases} $$

    $$ \begin{cases} b = 2 \sqrt{3} \\ \\ a^2 = \frac{3}{4} \cdot 12 \end{cases} $$

    $$ \begin{cases} b = 2 \sqrt{3} \\ \\ a^2 = 9 \end{cases} $$

    $$ \begin{cases} b = 2 \sqrt{3} \\ \\ a = 3 \end{cases} $$

    Now that we know the lengths from the center to the vertices: $ b = 2 \sqrt{3} $ and $ a = 3 $, we can substitute these into the standard equation of the hyperbola:

    $$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 $$

    $$ \frac{x^2}{9} - \frac{y^2}{12} = -1 $$

    This is the equation of the hyperbola centered at the origin, passing through the point $ P(-6; 2 \sqrt{15} )$ with an eccentricity of $ e = \frac{\sqrt{7}}{2} $, where the transverse axis is the y-axis.

    hyperbola equation

    And that's it!  

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Hyperbola

    How to Determine the Equation of a Hyperbola Given: