Integral Calculation Exercise 4
We aim to evaluate the following definite integral:
$$ \int_0^{\frac{1}{2}} \sqrt{1 - x^2} \ dx $$
The integrand \( \sqrt{1 - x^2} \) resembles the identity \( \cos(x) = \sqrt{1 - \sin^2(x)} \), which follows from the Pythagorean identity.
Note. From the fundamental identity $$ \cos^2 \alpha + \sin^2 \alpha = 1, $$ we can derive: $$ \cos^2 \alpha = 1 - \sin^2 \alpha $$ and thus $$ \sqrt{ \cos^2 \alpha } = \sqrt{ 1 - \sin^2 \alpha } $$ leading to $$ \cos \alpha = \sqrt{ 1 - \sin^2 \alpha } $$
We'll now apply the substitution method by setting \( x = \sin(t) \):
$$ x = \sin(t) $$
Since the sine function is invertible on the interval considered, we can express \( t \) as an arcsine:
$$ t = \arcsin(x) $$
We proceed by differentiating both sides:
$$ D[x] = D[\sin(t)] \quad \Rightarrow \quad dx = \cos(t) \ dt $$
We now substitute dx = cos(t) dt into the original integral:
$$ \int_0^{\frac{1}{2}} \sqrt{1 - x^2} \ dx = \int_0^{\frac{1}{2}} \sqrt{1 - x^2} \cdot \cos(t) \ dt $$
Substituting \( x = \sin(t) \), we get:
$$ \int_0^{\frac{1}{2}} \sqrt{1 - \sin^2(t)} \cdot \cos(t) \ dt $$
Using the identity \( \sqrt{1 - \sin^2(t)} = \cos(t) \), the integrand simplifies to:
$$ \int_0^{\frac{1}{2}} \cos^2(t) \ dt $$
Since the variable of integration is now \( t = \arcsin(x) \), we need to adjust the limits of integration accordingly:
$$ \int_{\arcsin(0)}^{\arcsin(\frac{1}{2})} \cos^2(t) \ dt = \int_0^{\frac{\pi}{6}} \cos^2(t) \ dt $$
We now apply the double-angle identity for cosine: \( \cos(2t) = 2\cos^2(t) - 1 \), which rearranges to \( \cos^2(t) = \frac{\cos(2t) + 1}{2} \).
Using this, we rewrite the integral as:
$$ \int_0^{\frac{\pi}{6}} \frac{\cos(2t) + 1}{2} \ dt $$
Splitting the integral:
$$ \int_0^{\frac{\pi}{6}} \frac{1}{2} \ dt + \int_0^{\frac{\pi}{6}} \frac{\cos(2t)}{2} \ dt $$
$$ \frac{1}{2} \int_0^{\frac{\pi}{6}} dt + \frac{1}{2} \int_0^{\frac{\pi}{6}} \cos(2t) \ dt $$
The first integral is immediate:
$$ \frac{1}{2} [t]_0^{\frac{\pi}{6}} + \frac{1}{2} \int_0^{\frac{\pi}{6}} \cos(2t) \ dt = \frac{\pi}{12} + \frac{1}{2} \int_0^{\frac{\pi}{6}} \cos(2t) \ dt $$
To handle the second integral, we multiply and divide by 2:
$$ \frac{\pi}{12} + \frac{1}{2} \cdot \frac{2}{2} \int_0^{\frac{\pi}{6}} \cos(2t) \ dt = \frac{\pi}{12} + \frac{1}{4} \int_0^{\frac{\pi}{6}} 2 \cos(2t) \ dt $$
Since the antiderivative of \( 2\cos(2t) \) is \( \sin(2t) \), we obtain:
$$ \frac{\pi}{12} + \frac{1}{4} \left[ \sin(2t) \right]_0^{\frac{\pi}{6}} $$
$$ \frac{\pi}{12} + \frac{1}{4} \left( \sin\left(\frac{\pi}{3}\right) - \sin(0) \right ) $$
$$ \frac{\pi}{12} + \frac{1}{4} \cdot \sin\left(\frac{\pi}{3}\right) $$
Since the sine of \( \pi/3 \) is \( \frac{\sqrt{3}}{2} \), this becomes:
$$ \frac{\pi}{12} + \frac{1}{4} \cdot \frac{\sqrt{3}}{2} = \frac{\pi}{12} + \frac{\sqrt{3}}{8} $$
Therefore, the value of the definite integral is:
$$ \frac{2\pi + 3\sqrt{3}}{24} $$
And that completes the solution.
