Integral Calculation Exercise 4

We aim to evaluate the following definite integral:

$$ \int_0^{\frac{1}{2}} \sqrt{1 - x^2} \ dx $$

The integrand \( \sqrt{1 - x^2} \) resembles the identity \( \cos(x) = \sqrt{1 - \sin^2(x)} \), which follows from the Pythagorean identity.

Note. From the fundamental identity $$ \cos^2 \alpha + \sin^2 \alpha = 1, $$ we can derive: $$ \cos^2 \alpha = 1 - \sin^2 \alpha $$ and thus $$ \sqrt{ \cos^2 \alpha } = \sqrt{ 1 - \sin^2 \alpha } $$ leading to $$ \cos \alpha = \sqrt{ 1 - \sin^2 \alpha } $$

We'll now apply the substitution method by setting \( x = \sin(t) \):

$$ x = \sin(t) $$

Since the sine function is invertible on the interval considered, we can express \( t \) as an arcsine:

$$ t = \arcsin(x) $$

We proceed by differentiating both sides:

$$ D[x] = D[\sin(t)] \quad \Rightarrow \quad dx = \cos(t) \ dt $$

We now substitute dx = cos(t) dt into the original integral:

$$ \int_0^{\frac{1}{2}} \sqrt{1 - x^2} \ dx = \int_0^{\frac{1}{2}} \sqrt{1 - x^2} \cdot \cos(t) \ dt $$

Substituting \( x = \sin(t) \), we get:

$$ \int_0^{\frac{1}{2}} \sqrt{1 - \sin^2(t)} \cdot \cos(t) \ dt $$

Using the identity \( \sqrt{1 - \sin^2(t)} = \cos(t) \), the integrand simplifies to:

$$ \int_0^{\frac{1}{2}} \cos^2(t) \ dt $$

Since the variable of integration is now \( t = \arcsin(x) \), we need to adjust the limits of integration accordingly:

$$ \int_{\arcsin(0)}^{\arcsin(\frac{1}{2})} \cos^2(t) \ dt = \int_0^{\frac{\pi}{6}} \cos^2(t) \ dt $$

We now apply the double-angle identity for cosine: \( \cos(2t) = 2\cos^2(t) - 1 \), which rearranges to \( \cos^2(t) = \frac{\cos(2t) + 1}{2} \).

Using this, we rewrite the integral as:

$$ \int_0^{\frac{\pi}{6}} \frac{\cos(2t) + 1}{2} \ dt $$

Splitting the integral:

$$ \int_0^{\frac{\pi}{6}} \frac{1}{2} \ dt + \int_0^{\frac{\pi}{6}} \frac{\cos(2t)}{2} \ dt $$

$$ \frac{1}{2} \int_0^{\frac{\pi}{6}} dt + \frac{1}{2} \int_0^{\frac{\pi}{6}} \cos(2t) \ dt $$

The first integral is immediate:

$$ \frac{1}{2} [t]_0^{\frac{\pi}{6}} + \frac{1}{2} \int_0^{\frac{\pi}{6}} \cos(2t) \ dt = \frac{\pi}{12} + \frac{1}{2} \int_0^{\frac{\pi}{6}} \cos(2t) \ dt $$

To handle the second integral, we multiply and divide by 2:

$$ \frac{\pi}{12} + \frac{1}{2} \cdot \frac{2}{2} \int_0^{\frac{\pi}{6}} \cos(2t) \ dt = \frac{\pi}{12} + \frac{1}{4} \int_0^{\frac{\pi}{6}} 2 \cos(2t) \ dt $$

Since the antiderivative of \( 2\cos(2t) \) is \( \sin(2t) \), we obtain:

$$ \frac{\pi}{12} + \frac{1}{4} \left[ \sin(2t) \right]_0^{\frac{\pi}{6}} $$

$$ \frac{\pi}{12} + \frac{1}{4} \left( \sin\left(\frac{\pi}{3}\right) - \sin(0) \right ) $$

$$ \frac{\pi}{12} + \frac{1}{4} \cdot \sin\left(\frac{\pi}{3}\right) $$

Since the sine of \( \pi/3 \) is \( \frac{\sqrt{3}}{2} \), this becomes:

$$ \frac{\pi}{12} + \frac{1}{4} \cdot \frac{\sqrt{3}}{2} = \frac{\pi}{12} + \frac{\sqrt{3}}{8} $$

Therefore, the value of the definite integral is:

$$ \frac{2\pi + 3\sqrt{3}}{24} $$

And that completes the solution.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Calculus

Exercises

Definite Integrals

Indefinite Integrals

Multivariable Integration

Numerical Integration