How to Find the Equation of a Parabola Given Three Points

To determine the equation of a parabola when you know three points \( A(x_1, y_1)\), \( B(x_2, y_2)\), and \( C(x_3, y_3)\), you can use the method of simultaneous equations.

The standard form of a parabola is:

\[ y = ax^2 + bx + c \]

Given the coordinates of three distinct points \( A(x_1, y_1)\), \( B(x_2, y_2)\), and \( C(x_3, y_3)\), you can substitute each point into the parabola's equation to form a system of three linear equations:

$$ y_1 = ax_1^2 + bx_1 + c $$

$$ y_2 = ax_2^2 + bx_2 + c $$

$$ y_3 = ax_3^2 + bx_3 + c $$

These equations can be written as a system of linear equations:

$$
\begin{cases}
ax_1^2 + bx_1 + c = y_1 \\ \\ ax_2^2 + bx_2 + c = y_2 \\ \\ ax_3^2 + bx_3 + c = y_3 \\ \end{cases} $$

By solving this system, you can find the coefficients "a", "b", and "c" for the parabola's equation \( y = ax^2 + bx + c \) that passes through the three points.

    A Practical Example

    Consider three distinct points \( A(1, 2)\), \( B(2, 3)\), and \( C(3, 5)\):

    Substitute the x and y coordinates of each point into the system of equations.

    $$
    \begin{cases}
    a(1^2) + b(1) + c = 2 \\ \\
    a(2^2) + b(2) + c = 3 \\ \\
    a(3^2) + b(3) + c = 5 \\
    \end{cases} $$

    This simplifies to:

    $$
    \begin{cases}
    a + b + c = 2 \\ \\
    4a + 2b + c = 3 \\ \\
    9a + 3b + c = 5 \\
    \end{cases} $$

    Next, solve this system to find the values of \( a \), \( b \), and \( c \) that satisfy these equations. You can use any method you prefer.

    In this case, we'll use Cramer's rule.

    Note: Any method for solving systems of equations will work.

    Write the system in matrix form:

    $$
    \begin{pmatrix}
    1 & 1 & 1 \\
    4 & 2 & 1 \\
    9 & 3 & 1 \\
    \end{pmatrix}
    \begin{pmatrix}
    a \\
    b \\
    c \\
    \end{pmatrix}
    =
    \begin{pmatrix}
    2 \\
    3 \\
    5 \\
    \end{pmatrix} $$

    The determinant of the coefficient matrix is:

    $$ \Delta = \begin{vmatrix}
    1 & 1 & 1 \\
    4 & 2 & 1 \\
    9 & 3 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 4 & 1 \\ 9 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 4 & 2 \\ 9 & 3 \end{vmatrix} = -1 + 5 -6 = -2 $$

    Next, calculate the determinants of the matrices obtained by replacing one of the columns (a, b, c) with the column of known terms (2, 3, 5) from the system:

    $$ \Delta_a = \begin{vmatrix}
    2 & 1 & 1 \\
    3 & 2 & 1 \\
    5 & 3 & 1 \end{vmatrix} = 2 \cdot \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & 1 \\ 5 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} =  -2  + 2 - 1 = -1 $$

    $$ \Delta_b = \begin{vmatrix}
    1 & 2 & 1 \\
    4 & 3 & 1 \\
    9 & 5 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 3 & 1 \\ 5 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 4 & 1 \\ 9 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 4 & 3 \\ 9 & 5 \end{vmatrix} = -2 + 10 -7 = 1 $$

    $$ \Delta_c = \begin{vmatrix}
    1 & 1 & 2 \\
    4 & 2 & 3 \\
    9 & 3 & 5 \end{vmatrix} = 1 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} - 1 \cdot \begin{vmatrix} 4 & 3 \\ 9 & 5 \end{vmatrix} + 2 \cdot \begin{vmatrix} 4 & 2 \\ 9 & 3 \end{vmatrix} = 1+7 -12 = -4 $$

    Thus, the solutions of the system are:

    $$ a = \frac{ \Delta_a  }{ \Delta } = \frac{-1}{-2} = \frac{1}{2} $$

    $$ b = \frac{ \Delta_b  }{ \Delta } = \frac{1}{-2} = - \frac{1}{2} $$

    $$ c = \frac{ \Delta_c  }{ \Delta } = \frac{-4}{-2} = 2 $$

    This gives us the coefficients for the parabola's equation:

    $$ y = ax^2+bx+c $$

    $$ y = \frac{1}{2}x^2- \frac{1}{2}x +2 $$

    This parabola passes through the points \( A(1, 2)\), \( B(2, 3)\), and \( C(3, 5)\)

    graphical representation of the parabola

    And that's it!

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Parabolas

    How to Derive the Equation of the Parabola Given: