Dividing Complex Numbers

To divide two complex numbers, \( a+bi \) and \( c+di \), we multiply both the numerator and denominator by the conjugate of the denominator, \( c-di \): $$ \frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} $$ Alternatively, we can use this formula. $$ \frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + i \cdot \frac{bc-ad}{c^2+d^2} $$

In the trigonometric form, the division of two complex numbers, \( z_1 = m_1(\cos \gamma_1 + i \sin \gamma_1) \) and \( z_2 = m_2(\cos \gamma_2 + i \sin \gamma_2) \), follows this formula:

$$ \frac{z_1}{z_2} = \frac{m_1}{m_2} \cdot [ \cos (\gamma_1 - \gamma_2) + i \cdot \sin (\gamma_1 - \gamma_2) ] $$

Here, \( m \) represents the modulus, while \( \gamma \) is the argument (angle) of the complex number in the Gaussian plane.

For the exponential form, division is expressed as:

$$ \frac{z_1}{z_2} = \frac{m_1 \cdot e^{i\gamma_1 }}{m_2 \cdot e^{i\gamma_2}} = \left( \frac{m_1}{m_2} \right) \cdot e^{i(\gamma_1-\gamma_2)} $$

A Practical Example

Let’s divide two complex numbers:

$$ z_1=3+2i $$ $$ z_2=4+7i $$

The division is:

$$ \frac{z_1}{z_2} = \frac{3+2i}{4+7i} $$

Method 1: Using the Conjugate

To simplify \( z_1 / z_2 \), we multiply both the numerator and denominator by the conjugate of \( z_2 \), which is \( z_2' = 4-7i \):

$$ \frac{z_1}{z_2} = \frac{3+2i}{4+7i} \cdot \frac{4-7i}{4-7i} $$

Expanding:

$$ = \frac{(3+2i) \cdot (4-7i)}{(4+7i) \cdot (4-7i)} $$

$$ = \frac{12 - 21i + 8i - 14i^2}{16 - 28i + 28i - 49i^2} $$

Since \( i^2 = -1 \), we simplify:

$$ = \frac{12 - 13i + 14}{16 + 49} $$

$$ = \frac{26 - 13i}{65} $$

$$ = \frac{26}{65} - \frac{13}{65}i $$

Method 2: Using the Division Formula

Alternatively, we can use the direct division formula for complex numbers:

$$ \frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + i \cdot \frac{bc-ad}{c^2+d^2} $$

For \( z_1 = 3+2i \) and \( z_2 = 4+7i \), we apply the formula:

$$ \frac{(3 \cdot 4) + (2 \cdot 7)}{4^2 + 7^2} + i \cdot \frac{(4 \cdot 2) - (3 \cdot 7)}{4^2 + 7^2} $$

$$ = \frac{12+14}{16+49} + i \cdot \frac{8-21}{16+49} $$

$$ = \frac{26}{65} - i \cdot \frac{13}{65} $$

Both methods yield the same result.

Proof

To derive the division formula, we express division as multiplication.

$$ \frac{a+bi}{c+di} $$

Using the fundamental rule of division, we multiply both numerator and denominator by the conjugate of \( c+di \), which is \( c-di \):

$$ \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} $$

Note. The term $$ \frac{c-di}{(c+di) \cdot (c-di)} = \frac{c-di}{c^2+d^2} $$ is the reciprocal of \( c+di \), meaning: $$ \frac{c-di}{c^2+d^2} = \frac{1}{c+di} $$ This allows us to rewrite the expression as: $$ \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = (a+bi) \cdot \frac{1}{c+di} $$ This confirms that dividing two complex numbers is equivalent to multiplying by the reciprocal of \( c+di \): $$ \frac{a+bi}{c+di} = (a+bi) \cdot \frac{1}{c+di} $$

Expanding:

$$ \frac{(a+bi) \cdot (c-di)}{(c+di) \cdot (c-di)} $$

$$ = \frac{ ac - adi + bci - bdi^2 }{ c^2 - d^2i^2 } $$

Since \( i^2 = -1 \), we simplify:

$$ = \frac{ ac - adi + bci + bd }{ c^2 + d^2 } $$

Factoring out \( i \):

$$ = \frac{ ac+ bd + (bc-ad)i }{ c^2 + d^2 } $$

And separating real and imaginary parts:

$$ = \frac{ ac+ bd }{ c^2 + d^2 } - \frac{ bc-ad }{ c^2 + d^2 } i $$

And that gives us the formula for dividing complex numbers.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Complex Numbers