Reciprocal of a Complex Number

The reciprocal of a complex number \( z = a + bi \) is another complex number \( 1/z \), defined as: $$ \frac{1}{z} = \frac{1}{a+bi} $$ such that their product equals 1: $$ z \cdot \frac{1}{z} = 1 $$ Here, 1 is the multiplicative identity. More generally, the reciprocal of a complex number follows the rule: $$ z^{-n} = \frac{1}{z^n} $$

To determine the reciprocal of a complex number \( z_1 \), we start with \( \frac{1}{z_1} \) and apply a sequence of algebraic transformations.

One standard approach to computing \( \frac{1}{z_1} \) is to multiply both the numerator and denominator by the complex conjugate \( \bar{z_1} \):

$$ z_2 = \frac{1}{ z_1 } \cdot \frac{\bar{z_1} }{ \bar{z_1} } $$

The resulting value, \( z_2 \), is the reciprocal of \( z_1 \), satisfying the fundamental property:

$$ z_1 \cdot z_2 = 1 $$

Alternative Method

If \( z_1 \neq 0 \), its reciprocal can also be computed directly using the formula:

$$ z_2 = \frac{1}{z_1} = \frac{\overline{z_1}}{|z_1|^2} $$

Here, \( \overline{z_1} \) is the complex conjugate of \( z_1 \), and \( |z_1|^2 \) is the squared modulus, given by \( z_1 \cdot \overline{z_1} \).

Personally, I find this method faster than the previous one—provided you remember the formula.

For example, if \( z_1 = a + bi \), where \( a, b \in \mathbb{R} \), its reciprocal is: $$ z_2 = \frac{a - bi}{a^2 + b^2} $$

Worked Example

Let’s apply this to a specific complex number:

$$ z = 3+5i $$

The reciprocal of \( z \) is:

$$ \frac{1}{z} = \frac{1}{3+5i} $$

To verify, we compute the product \( z \cdot (1/z) \):

$$ z \cdot \frac{1}{z} = (3+5i) \cdot \frac{1}{3+5i} $$

$$ z \cdot \frac{1}{z} = \frac{3+5i}{3+5i} $$

This is a division of two complex numbers. The standard technique for simplifying such expressions is to multiply the numerator and denominator by the conjugate of the denominator:

$$ z \cdot \frac{1}{z} = \frac{3+5i}{3+5i} \cdot \frac{3-5i}{3-5i} $$

Expanding both the numerator and denominator:

$$ z \cdot \frac{1}{z} = \frac{(3+5i) \cdot (3-5i)}{(3+5i) \cdot (3-5i)} $$

$$ z \cdot \frac{1}{z} = \frac{9 - 15i + 15i - 25i^2}{9 - 15i + 15i - 25i^2} $$

$$ z \cdot \frac{1}{z} = \frac{9 - 25i^2}{9 - 25i^2} $$

Since we know that \( i^2 = -1 \):

$$ z \cdot \frac{1}{z} = \frac{9 - 25(-1)}{9 - 25(-1)} $$

$$ z \cdot \frac{1}{z} = \frac{9 + 25}{9 + 25} $$

At this stage, both the numerator and denominator are real numbers:

$$ z \cdot \frac{1}{z} = \frac{34}{34} $$

Since this is a division of two identical real numbers, the result is simply:

$$ z \cdot \frac{1}{z} = 1 $$

Note: We could also have used the general formula for dividing two complex numbers:

$$ \frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2} i $$

Substituting \( a = 3 \), \( b = 5 \), \( c = 3 \), and \( d = 5 \):

$$ \frac{3+5i}{3+5i} = \frac{3 \cdot 3+5 \cdot 5}{3^2+5^2} + \frac{5 \cdot 3-3 \cdot 5}{3^2+5^2} i $$

$$ = \frac{9+25}{9+25} + \frac{15-15}{3^2+5^2} i $$

$$ = \frac{34}{34} + \frac{0}{3^2+5^2} i $$

$$ = 1 + 0i $$

$$ = 1 $$

Although the result is the same, I find the direct conjugate method easier to remember. That’s why I prefer computing the reciprocal of a complex number by multiplying the numerator and denominator by the conjugate of the denominator.

Example 2

Let's find the reciprocal of the complex number \( z_1 = 2 + 3i \).

The reciprocal \( z_2 \) of a nonzero complex number \( z_1 \) is given by the formula:

$$ z_2 = \frac{1}{z_1} = \frac{1}{2+3i} $$

To rationalize the denominator, we multiply both the numerator and denominator by the complex conjugate of \( z_1 \). The conjugate of \( 2 + 3i \) is \( 2 - 3i \), so:

$$ z_2 = \frac{1}{2 + 3i} \cdot \frac{2 - 3i}{2 - 3i} $$

$$ z_2 = \frac{2 - 3i}{(2 + 3i)(2 - 3i)} $$

Since the product of a complex number and its conjugate equals the square of its modulus, we simplify the denominator:

$$ z_2 = \frac{2 - 3i}{2^2 + 3^2} $$

$$ z_2 = \frac{2 - 3i}{4 + 9} $$

$$ z_2 = \frac{2 - 3i}{13} $$

Expressing this in standard form:

$$ z_2 = \frac{2}{13} - \frac{3}{13}i $$

Thus, the reciprocal of \( 2 + 3i \) is:

$$ z_2 = \frac{2 - 3i}{13} $$

Verification: To confirm the result, we compute the product \( z_1 \cdot z_2 \).

$$ z_1 \cdot z_2 = (2+3i) \cdot \frac{2 - 3i}{13} $$

$$ z_1 \cdot z_2 = \frac{(2+3i) \cdot (2-3i)}{13} $$

Expanding the numerator:

$$ z_1 \cdot z_2 = \frac{4 - 6i + 6i - 9i^2}{13} $$

$$ z_1 \cdot z_2 = \frac{4 - 9i^2}{13} $$

Since \( i^2 = -1 \), we substitute:

$$ z_1 \cdot z_2 = \frac{4 - 9(-1)}{13} $$

$$ z_1 \cdot z_2 = \frac{4 + 9}{13} $$

$$ z_1 \cdot z_2 = \frac{13}{13} $$

$$ z_1 \cdot z_2 = 1 $$

Since the product equals 1, the multiplicative identity, this confirms that \( z_2 \) is indeed the reciprocal of \( z_1 \).

Example 3 (Alternative and Faster Method)

Now, let's compute the reciprocal of \( z_1 = 2 + 3i \) using a more direct approach.

We apply the formula:

$$ z_2 = \frac{1}{z_1} = \frac{\overline{z_1}}{|z_1|^2} $$

The conjugate of \( z_1 \) is \( \overline{z_1} = 2 - 3i \), so:

$$ z_2 = \frac{2 - 3i}{|z_1|^2} $$

The squared modulus of \( z_1 \) is:

$$ |z_1|^2 = (\sqrt{2^2 + (-3)^2})^2 = 4 + 9 = 13 $$

Substituting:

$$ z_2 = \frac{2 - 3i}{13} $$

With this approach, we arrive at the reciprocal of \( z_1 \) more efficiently than in the previous example.

Proof

Consider a complex number \( z \) and its reciprocal \( \frac{1}{z} \):

$$ z = a + bi $$

$$ \frac{1}{z} = \frac{1}{a+bi} $$

We verify that multiplying \( z \) by its reciprocal yields 1:

$$ z \cdot \frac{1}{z} = (a+bi) \cdot \frac{1}{a+bi} $$

$$ z \cdot \frac{1}{z} = \frac{a+bi}{a+bi} $$

To simplify this expression, we multiply both the numerator and denominator by the complex conjugate of \( a + bi \), which is \( a - bi \):

$$ z \cdot \frac{1}{z} = \frac{a+bi}{a+bi} \cdot \frac{a-bi}{a-bi} $$

$$ z \cdot \frac{1}{z} = \frac{(a+bi)(a-bi)}{(a+bi)(a-bi)} $$

Expanding both the numerator and denominator:

$$ z \cdot \frac{1}{z} = \frac{a^2 - abi + abi - b^2i^2}{a^2 - abi + abi - b^2i^2} $$

$$ z \cdot \frac{1}{z} = \frac{a^2 - b^2i^2}{a^2 - b^2i^2} $$

Since \( i^2 = -1 \), we substitute:

$$ z \cdot \frac{1}{z} = \frac{a^2 - b^2(-1)}{a^2 - b^2(-1)} $$

$$ z \cdot \frac{1}{z} = \frac{a^2 + b^2}{a^2 + b^2} $$

Since the numerator and denominator are identical real numbers, their quotient is 1:

$$ z \cdot \frac{1}{z} = 1 $$

Properties of Complex Reciprocals

Some useful properties of the reciprocals of complex numbers:

  • The reciprocal of \( z = a + bi \) is given by: $$ \frac{1}{z} = \frac{a - bi}{a^2 + b^2} $$

    Proof: Starting from the definition of the reciprocal:

    $$ \frac{1}{z} = \frac{1}{a+bi} $$

    Multiplying the numerator and denominator by the conjugate \( \overline{z} = a - bi \):

    $$ \frac{1}{z} = \frac{1}{a+bi} \cdot \frac{a - bi}{a - bi} $$

    Expanding the denominator:

    $$ \frac{1}{z} = \frac{a - bi}{(a+bi)(a-bi)} $$

    $$ \frac{1}{z} = \frac{a - bi}{a^2 - abi + abi - b^2i^2} $$

    $$ \frac{1}{z} = \frac{a - bi}{a^2 - b^2i^2} $$

    Since \( i^2 = -1 \), we simplify:

    $$ \frac{1}{z} = \frac{a - bi}{a^2 - b^2(-1)} $$

    $$ \frac{1}{z} = \frac{a - bi}{a^2 + b^2} $$

    Verification: To verify, we multiply the reciprocal by \( z = a + bi \):

    $$ z \cdot \frac{1}{z} = (a+bi) \cdot \frac{a - bi}{a^2 + b^2} $$

    $$ z \cdot \frac{1}{z} = \frac{(a+bi)(a - bi)}{a^2 + b^2} $$

    Expanding:

    $$ z \cdot \frac{1}{z} = \frac{a^2 - abi + abi - b^2i^2}{a^2 + b^2} $$

    $$ z \cdot \frac{1}{z} = \frac{a^2 - b^2i^2}{a^2 + b^2} $$

    Again, substituting \( i^2 = -1 \):

    $$ z \cdot \frac{1}{z} = \frac{a^2 - b^2(-1)}{a^2 + b^2} $$

    $$ z \cdot \frac{1}{z} = \frac{a^2 + b^2}{a^2 + b^2} $$

    Since this simplifies to 1, the formula is confirmed.

Reciprocal of a Complex Number in Trigonometric Form

The reciprocal of a complex number expressed in trigonometric form, \( z = r(\cos \alpha + i \sin \alpha) \), is given by:

$$ \frac{1}{z} = \frac{1}{r} \cdot (\cos \alpha - i \sin \alpha) $$

More generally, for negative exponents:

$$ z^{-n} = \frac{1}{r^n} \cdot (\cos n\alpha - i \sin n\alpha) $$

Computing the reciprocal is often more straightforward when the complex number is in trigonometric form.

A Practical Example

Consider the complex number:

$$ z = 3+5i $$

We express it in trigonometric form:

$$ z = \sqrt{3^2+5^2} \cdot \left[ \cos \left( \arctan \frac{5}{3} \right) + i \sin \left( \arctan \frac{5}{3} \right) \right] $$

$$ z = \sqrt{34} \cdot [ \cos ( 59.04^\circ ) + i \sin ( 59.04^\circ ) ] $$

Applying the reciprocal formula:

$$ \frac{1}{z} = \frac{1}{\sqrt{34}} \cdot [ \cos(59.04^\circ) - i \sin(59.04^\circ)] $$

Converting back to standard form:

$$ x = \frac{1}{\sqrt{34}} \cdot \cos (59.04^\circ) = 0.09 $$

$$ y = \frac{1}{\sqrt{34}} \cdot [-\sin (59.04^\circ)] = -0.15 $$

Thus, the reciprocal in rectangular form is:

$$ \frac{1}{z} = 0.09 - 0.15i $$

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Complex Numbers