Power of a Complex Number

To raise a complex number in algebraic form, \( z = a + bi \), to a power, we apply the binomial expansion formula: $$ z^n = (a+bi)^n $$ keeping in mind that the square of the imaginary unit is always equal to -1: $$ i^2 = -1 $$

In many cases, though, it's more convenient to compute the power of a complex number using its trigonometric or exponential form.

A Practical Example

Let's find the square of the complex number \( z = 1 + 3i \).

$$ z = 1 + 3i $$

We treat this as a squared binomial, \( (a + b)^2 \):

$$ z^2 = (1+3i)^2 $$

Applying the binomial square formula, \( (a + b)^2 = a^2 + 2ab + b^2 \):

$$ z^2 = 1^2 + 2(1)(3i) + (3i)^2 $$

$$ z^2 = 1 + 6i + 9i^2 $$

Since \( i^2 = -1 \):

$$ z^2 = 1 + 6i + 9(-1) $$

$$ z^2 = 1 + 6i - 9 $$

$$ z^2 = -8 + 6i $$

So, the square of \( z \) is \( z^2 = -8 + 6i \).

Example 2

Now, let's compute the cube of the complex number \( z = 1 + 3i \).

$$ z = 1 + 3i $$

We treat this as a binomial raised to the third power, \( (a + b)^3 \):

$$ z^3 = (1+3i)^3 $$

Using the binomial expansion formula, \( (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \):

$$ z^3 = 1^3 + 3(1^2)(3i) + 3(1)(3i)^2 + (3i)^3 $$

$$ z^3 = 1 + 9i + 3(1)(9i^2) + 27i^3 $$

$$ z^3 = 1 + 9i + 27i^2 + 27i^3 $$

Since \( i^2 = -1 \):

$$ z^3 = 1 + 9i + 27(-1) + 27i^3 $$

$$ z^3 = 1 + 9i - 27 + 27i^3 $$

$$ z^3 = -26 + 9i + 27i^3 $$

Using the fact that \( i^3 = i^2 \cdot i \):

$$ z^3 = -26 + 9i + 27(-1 \cdot i) $$

Since \( i^2 = -1 \):

$$ z^3 = -26 + 9i - 27i $$

$$ z^3 = -26 - 18i $$

So, the cube of \( z \) is \( z^3 = -26 - 18i \).

Exponentiating a Complex Number in Trigonometric Form

Given a complex number in trigonometric form: $$ z = d \cdot ( \cos \alpha + i \cdot \sin \alpha ) $$ raising it to the power of \( n \) results in another complex number where the modulus is raised to the \( n \)th power and the argument is multiplied by \( n \): $$ z^n = d^n \cdot [ \cos (n \cdot \alpha) + i \cdot \sin (n \cdot \alpha) ] $$

This result follows from De Moivre's Theorem, which establishes a fundamental link between complex numbers and trigonometric functions:

$$ ( \cos \alpha + i \sin \alpha )^n = \cos (n \alpha) + i \sin (n \alpha) $$

For exponents greater than 3, it's often easier to first convert the complex number from algebraic form to trigonometric or exponential form.

This significantly streamlines the calculation.

Example: Squaring a Complex Number

Consider the complex number:

$$ z = 1 + 3i $$

Its square is simply:

$$ z^2 = (1 + 3i) \cdot (1 + 3i) $$

To simplify the computation, we first express \( z \) in trigonometric form:

$$ z = \sqrt{1^2+3^2} \cdot \Big[ \cos \Big( \arctan \frac{3}{1} \Big) + i \sin \Big( \arctan \frac{3}{1} \Big) \Big] $$

$$ z = \sqrt{10} \cdot \Big( \cos 71.57^\circ + i \sin 71.57^\circ \Big) $$

Applying De Moivre’s Theorem with \( n = 2 \):

$$ z^2 = d^2 \cdot \Big[ \cos (2 \cdot 71.57^\circ) + i \sin (2 \cdot 71.57^\circ) \Big] $$

Substituting values:

$$ z^2 = ( \sqrt{10} )^2 \cdot \Big[ \cos (143.14^\circ) + i \sin (143.14^\circ) \Big] $$

This gives the squared complex number in trigonometric form:

$$ 10 \cdot \Big[ \cos (143.14^\circ) + i \sin (143.14^\circ) \Big] $$

Note: If needed, we can convert the result back to algebraic form using standard conversion formulas: $$ a = d \cdot \cos \alpha = 10 \cdot \cos 143.14^\circ = -8 $$ $$ b = d \cdot \sin \alpha = 10 \cdot \sin 143.14^\circ = 6 $$ Thus, in algebraic form, the squared complex number is: $$ 10 \cdot \Big[ \cos (143.14^\circ) + i \sin (143.14^\circ) \Big] = -8 + 6i $$

Proof of De Moivre’s Theorem

For a given complex number:

$$ z = d \cdot ( \cos \alpha + i \cdot \sin \alpha ) $$

Squaring both sides:

$$ z^2 = z \cdot z $$

Expanding:

$$ z^2 = \Big[ d \cdot ( \cos \alpha + i \cdot \sin \alpha ) \Big] \cdot \Big[ d \cdot ( \cos \alpha + i \cdot \sin \alpha ) \Big] $$

Using the trigonometric multiplication rule for complex numbers,

we multiply the moduli and add the arguments:

$$ d \cdot d \cdot \Big[ \cos (\alpha+\alpha) + i \sin (\alpha+\alpha) \Big] $$

$$ d^2 \cdot \Big[ \cos (2\alpha) + i \sin(2\alpha) \Big] $$

Extending this to an exponent \( n \), we multiply the complex number by itself \( n \) times:

$$ z^n = \underbrace{z \cdot z \cdots \cdot z}_{n \text{ times}} $$

Since multiplication in trigonometric form follows the pattern of multiplying moduli and summing arguments:

$$ (\underbrace{d \cdot d \cdots \cdot d}_{n \text{ times}}) \cdot \Big[ \cos ( \underbrace{\alpha + \alpha + \cdots + \alpha}_{n \text{ times}} ) + i \sin( \underbrace{\alpha + \alpha + \cdots + \alpha}_{n \text{ times}} ) \Big] $$

$$ d^n \cdot \Big[ \cos ( n \cdot \alpha) + i \sin(n \cdot \alpha) \Big] $$

Thus, for any integer \( n \), the general formula for raising a complex number to a power is:

De Moivre’s Theorem

$$ \Big[d \cdot ( \cos \alpha + i \cdot \sin \alpha ) \Big]^n = d^n \cdot \Big[ \cos (n \cdot \alpha) + i \sin(n \cdot \alpha) \Big] $$

Note: If the exponent is a negative integer, the same exponentiation rule applies as for real numbers: a negative exponent corresponds to taking the reciprocal: $$ z^{-n} = \frac{1}{z^n} $$ In trigonometric form: $$ \Big[ d \cdot (\cos \alpha + i \cdot \sin \alpha) \Big]^{-n} = \frac{1}{d^n \cdot (\cos n \alpha + i \sin n \alpha)} = \frac{1}{d^n} \cdot (\cos n \alpha - i \sin n \alpha) $$ For a detailed explanation of the algebraic steps, refer to the proof rather than repeating the derivation here.

Raising a Complex Number to a Power in Exponential Form

Given a complex number in exponential form: $$ z = d \cdot ( \cos \alpha + i \cdot \sin \alpha ) = d \cdot e^{i \alpha} $$ its \( n \)th power is given by: $$ z^n = d^n \cdot e^{i n \alpha} $$

This provides an alternative and often more convenient way to compute the \( n \)th power of a complex number.

Example

Let's take the same complex number from the previous example:

$$ z = 1+3i $$

First, we convert it to exponential form:

$$ z = \sqrt{10} \cdot e^{i 71.57^\circ} $$

To compute its square, we apply the formula with \( n = 2 \):

$$ z^2 = d^n \cdot e^{i n \alpha} $$

Substituting \( n = 2 \):

$$ z^2 = d^2 \cdot e^{i 2\alpha} $$

Since the modulus is \( \sqrt{10} \) and the argument is \( 71.57^\circ \):

$$ z^2 = (\sqrt{10})^2 \cdot e^{i (2 \cdot 71.57^\circ)} $$

$$ z^2 = 10 \cdot e^{i 143.14^\circ} $$

This is the square of the complex number \( z^2 = (1+3i)^2 \) in exponential form.

Note: To verify the result, we convert the complex number from exponential back to trigonometric form: $$ z^2 = 10 \cdot e^{i 143.14^\circ} $$ $$ z^2 = 10 \cdot ( \cos 143.14^\circ + i \sin 143.14^\circ) $$ Then, converting it to algebraic form: $$ z^2 = 10 \cdot \cos 143.14^\circ + 10 i \sin 143.14^\circ $$ $$ z^2 = 10 \cdot (-0.8) + 10 i \cdot 0.6 $$ $$ z^2 = -8 + 6i $$ which matches the result obtained earlier.

Following the same approach, we can efficiently compute higher powers as well.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Complex Numbers