Root of a Complex Number

To find the n-th root n√z of a complex number \( z = a + bi \), where \( n \) is a positive integer, we first express it in polar (trigonometric) form: $$ z = d \cdot \left( \cos a + i \sin a \right) $$ Then, we compute its roots using the formula: $$ \sqrt[n]{z} = \sqrt[n]{d} \cdot \left( \cos \frac{a + 2\pi k}{n} + i \sin \frac{a + 2\pi k}{n} \right) $$ for each \( k \) in the range \( 0 \) to \( n-1 \).

The n-th root of \( z \) is a complex number \( w \) such that raising it to the power of \( n \) gives \( z \):

$$ \sqrt[n]{z} = w \Leftrightarrow w^n = z $$

Every nonzero complex number has exactly \( n \) distinct n-th roots.

For instance, a square root yields two solutions, a cube root results in three, and so on.

Computing the n-th Root Using Exponential Form

Alternatively, we can determine the n-th root of a complex number using its exponential representation.

In exponential form, the n-th root n√z of a complex number is expressed as: $$ \sqrt[n]{z} = d^{\frac{1}{n}} \cdot e^{i \frac{a + 2\pi k}{n} } $$ or more generally: $$ \sqrt[n]{z^m} = d^{\frac{m}{n}} \cdot e^{i m \frac{a + 2\pi k}{n} } $$ where \( n \) is a positive integer (\( n > 0 \)).

Worked Examples

Example 1

Consider the complex number:

$$ z = 3 + i 2 $$

Geometrically, this represents the point \( P(3,2) \) on the complex plane.

Cartesian representation of complex numbers

To express \( z \) in trigonometric form, we first compute its modulus:

$$ d = \sqrt{3^2 + 2^2} = \sqrt{13} $$

Thus, we write:

$$ z = \sqrt{13} \left( \cos a + i \sin a \right) $$

To determine the argument \( a \), we use:

$$ \cos a = \frac{x}{d} = \frac{3}{\sqrt{13}} $$

$$ \sin a = \frac{y}{d} = \frac{2}{\sqrt{13}} $$

Using inverse trigonometric functions:

$$ a = \arccos \left( \frac{3}{\sqrt{13}} \right) = 0.588 \text{ rad} $$

$$ a = \arcsin \left( \frac{2}{\sqrt{13}} \right) = 0.588 \text{ rad} $$

Now, let's find the square root (\( n=2 \)) using:

$$ \sqrt[2]{z} = \sqrt[2]{\sqrt{13}} \cdot \left( \cos \frac{a + 2\pi k}{2} + i \sin \frac{a + 2\pi k}{2} \right) $$

Since a square root has two solutions, we evaluate it for \( k=0 \) and \( k=1 \).

For \( k = 0 \):

$$ \sqrt[2]{\sqrt{13}} \cdot \left( \cos \frac{0.588}{2} + i \sin \frac{0.588}{2} \right) $$

$$ \approx 1.817 + i 0.55 $$

For \( k = 1 \):

$$ \sqrt[2]{\sqrt{13}} \cdot \left( \cos \frac{(0.588 + 2\pi)}{2} + i \sin \frac{(0.588 + 2\pi)}{2} \right) $$

$$ \approx -1.817 - i 0.55 $$

Example 2

Now, consider the purely imaginary number:

$$ z = 0 + i 1 $$

or simply:

$$ z = i $$

In polar form, we write:

$$ z = \sqrt{0^2+1^2} \cdot \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) $$

$$ z = 1 \cdot \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) $$

Finding its square roots:

For \( k = 0 \):

$$ \sqrt{z} = \sqrt{1} \cdot \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) $$

$$ = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} $$

For \( k = 1 \):

$$ \sqrt{z} = \sqrt{1} \cdot \left( \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) $$

$$ = \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} $$

Proof

Given a complex number:

$$ z = x + iy $$

we express it in polar (trigonometric) form:

$$ z = d \cdot \left( \cos a + i \sin a \right) $$

If \( z' \) is an n-th root of \( z \), then it can also be written in polar form as:

$$ z' = d' \cdot \left( \cos a' + i \sin a' \right) $$

Since \( z' \) is an n-th root, raising it to the power of \( n \) must yield \( z \):

$$ (z')^n = z $$

Substituting the polar forms of \( z \) and \( z' \):

$$ \left( d' \cdot \left( \cos a' + i \sin a' \right) \right)^n = d \cdot \left( \cos a + i \sin a \right) $$

Applying the properties of exponentiation:

$$ (d')^n \cdot \left( \cos a' + i \sin a' \right)^n = d \cdot \left( \cos a + i \sin a \right) $$

From this, it follows that \( d' \) must be the n-th root of \( d \):

$$ d' = \sqrt[n]{d} $$

Substituting this into our equation:

$$ \sqrt[n]{d} \cdot \left( \cos a' + i \sin a' \right)^n = d \cdot \left( \cos a + i \sin a \right) $$

Since the cosine and sine functions are periodic with period \( 2\pi \), we account for all possible angles by writing:

$$ \sqrt[n]{d} \cdot \left( \cos a' + i \sin a' \right)^n = d \cdot \left( \cos (a + 2\pi k) + i \sin (a + 2\pi k) \right) $$

Applying De Moivre’s Theorem on complex number exponentiation, we expand the left-hand side:

$$ \sqrt[n]{d} \cdot \left( \cos (n a') + i \sin (n a') \right) = d \cdot \left( \cos (a + 2\pi k) + i \sin (a + 2\pi k) \right) $$

Explanation: To see why this works, consider the special case where \( n = 2 \). We expand:

$$ (\cos a + i \sin a)^2 $$

Using the binomial expansion:

$$ \cos^2 a + 2i \cos a \sin a + i^2 \sin^2 a $$

Since \( i^2 = -1 \), this simplifies to:

$$ \cos^2 a + 2i \cos a \sin a - \sin^2 a $$

Using trigonometric double-angle identities:

$$ \cos^2 a - \sin^2 a = \cos 2a $$

$$ 2 \sin a \cos a = \sin 2a $$

So we obtain:

$$ \cos 2a + i \sin 2a $$

Comparing both sides of the equation, we deduce that:

$$ n a' = a + 2\pi k $$

Solving for \( a' \):

$$ a' = \frac{a + 2\pi k}{n} $$

Thus, for any complex number \( z \), expressed in polar form as:

$$ z = d \cdot \left( \cos a + i \sin a \right) $$

if \( z' \) is an n-th root of \( z \), we have:

$$ z' = \sqrt[n]{z} $$

which means:

$$ d' \cdot \left( \cos a' + i \sin a' \right) = \sqrt[n]{z} $$

Substituting our previously found expressions for \( d' \) and \( a' \):

$$ \sqrt[n]{d} \cdot \left( \cos \frac{a + 2\pi k}{n} + i \sin \frac{a + 2\pi k}{n} \right) = \sqrt[n]{z} $$

This is precisely the formula we set out to prove.

An Alternative Method for Computing Roots

Once we have found the first n-th root of a complex number, we can derive the remaining roots by multiplying this solution by the n-th roots of unity.

The general formula for obtaining all n-th roots is:

$$ \sqrt[n]{d} \cdot \left( \cos \frac{\alpha}{n} + i \sin \frac{\alpha}{n} \right) \cdot \sqrt[n]{1} $$

Since the n-th roots of unity satisfy:

$$ \sqrt[n]{1} = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \quad k = 0,1,\dots, n-1 $$

we can rewrite the formula as:

$$ \sqrt[n]{d} \cdot \left( \cos \frac{\alpha}{n} + i \sin \frac{\alpha}{n} \right) \cdot \left( \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} \right) $$

Example: Finding the Square Roots of \( i \)

Let's revisit the complex number:

$$ z = 0 + i $$

In polar form, this is:

$$ z = 1 \cdot \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) $$

Since we are computing the square roots (\( n = 2 \)), there are two solutions.

The principal root (for \( k = 0 \)) is:

$$ \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} $$

Note: This result was derived in the previous example. For reference, the derivation follows:

$$ \sqrt{z} = \sqrt{1} \cdot \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) $$

Computing the Second Root Using Roots of Unity

Rather than repeating the full calculation for \( k = 1 \), we use the fact that the second root can be found by multiplying the principal root by the square root of unity.

$$ \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \cdot \left( \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} \right) $$

Substituting \( k = 1 \) and \( n = 2 \):

$$ \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \cdot \left( \cos \pi + i \sin \pi \right) $$

Using the multiplication formula for complex numbers in polar form, we apply angle addition:

$$ \cos \left( \frac{\pi}{4} + \pi \right) + i \sin \left( \frac{\pi}{4} + \pi \right) $$

Since \( n = 2 \), we compute:

$$ \cos \left( \frac{\pi}{4} + \frac{2\pi}{2} \right) + i \sin \left( \frac{\pi}{4} + \frac{2\pi}{2} \right) $$

$$ \cos \left( \frac{\pi + 4\pi}{4} \right) + i \sin \left( \frac{\pi + 4\pi}{4} \right) $$

$$ \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} $$

This result is identical to the one obtained using direct computation.

Verification

To confirm our approach, we compare it with the explicit calculation for \( k = 1 \) from the previous example:

$$ \sqrt{z} = \sqrt{1} \cdot \left( \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) $$

which simplifies to:

$$ \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} $$

Thus, the alternative method gives the same result as direct computation.

Generalizing the Method

This approach provides an efficient way to compute all n-th roots of a complex number:

  • First, compute the principal root (for \( k = 0 \)).
  • Then, obtain the remaining roots by multiplying the principal root by successive n-th roots of unity.

This avoids redundant calculations and provides a structured method for finding all n-th roots of any complex number.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Complex Numbers