Root of a Complex Number
To find the n-th root n√z of a complex number \( z = a + bi \), where \( n \) is a positive integer, we first express it in polar (trigonometric) form: $$ z = d \cdot \left( \cos a + i \sin a \right) $$ Then, we compute its roots using the formula: $$ \sqrt[n]{z} = \sqrt[n]{d} \cdot \left( \cos \frac{a + 2\pi k}{n} + i \sin \frac{a + 2\pi k}{n} \right) $$ for each \( k \) in the range \( 0 \) to \( n-1 \).
The n-th root of \( z \) is a complex number \( w \) such that raising it to the power of \( n \) gives \( z \):
$$ \sqrt[n]{z} = w \Leftrightarrow w^n = z $$
Every nonzero complex number has exactly \( n \) distinct n-th roots.
For instance, a square root yields two solutions, a cube root results in three, and so on.
Computing the n-th Root Using Exponential Form
Alternatively, we can determine the n-th root of a complex number using its exponential representation.
In exponential form, the n-th root n√z of a complex number is expressed as: $$ \sqrt[n]{z} = d^{\frac{1}{n}} \cdot e^{i \frac{a + 2\pi k}{n} } $$ or more generally: $$ \sqrt[n]{z^m} = d^{\frac{m}{n}} \cdot e^{i m \frac{a + 2\pi k}{n} } $$ where \( n \) is a positive integer (\( n > 0 \)).
Worked Examples
Example 1
Consider the complex number:
$$ z = 3 + i 2 $$
Geometrically, this represents the point \( P(3,2) \) on the complex plane.
To express \( z \) in trigonometric form, we first compute its modulus:
$$ d = \sqrt{3^2 + 2^2} = \sqrt{13} $$
Thus, we write:
$$ z = \sqrt{13} \left( \cos a + i \sin a \right) $$
To determine the argument \( a \), we use:
$$ \cos a = \frac{x}{d} = \frac{3}{\sqrt{13}} $$
$$ \sin a = \frac{y}{d} = \frac{2}{\sqrt{13}} $$
Using inverse trigonometric functions:
$$ a = \arccos \left( \frac{3}{\sqrt{13}} \right) = 0.588 \text{ rad} $$
$$ a = \arcsin \left( \frac{2}{\sqrt{13}} \right) = 0.588 \text{ rad} $$
Now, let's find the square root (\( n=2 \)) using:
$$ \sqrt[2]{z} = \sqrt[2]{\sqrt{13}} \cdot \left( \cos \frac{a + 2\pi k}{2} + i \sin \frac{a + 2\pi k}{2} \right) $$
Since a square root has two solutions, we evaluate it for \( k=0 \) and \( k=1 \).
For \( k = 0 \):
$$ \sqrt[2]{\sqrt{13}} \cdot \left( \cos \frac{0.588}{2} + i \sin \frac{0.588}{2} \right) $$
$$ \approx 1.817 + i 0.55 $$
For \( k = 1 \):
$$ \sqrt[2]{\sqrt{13}} \cdot \left( \cos \frac{(0.588 + 2\pi)}{2} + i \sin \frac{(0.588 + 2\pi)}{2} \right) $$
$$ \approx -1.817 - i 0.55 $$
Example 2
Now, consider the purely imaginary number:
$$ z = 0 + i 1 $$
or simply:
$$ z = i $$
In polar form, we write:
$$ z = \sqrt{0^2+1^2} \cdot \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) $$
$$ z = 1 \cdot \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) $$
Finding its square roots:
For \( k = 0 \):
$$ \sqrt{z} = \sqrt{1} \cdot \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) $$
$$ = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} $$
For \( k = 1 \):
$$ \sqrt{z} = \sqrt{1} \cdot \left( \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) $$
$$ = \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} $$
Proof
Given a complex number:
$$ z = x + iy $$
we express it in polar (trigonometric) form:
$$ z = d \cdot \left( \cos a + i \sin a \right) $$
If \( z' \) is an n-th root of \( z \), then it can also be written in polar form as:
$$ z' = d' \cdot \left( \cos a' + i \sin a' \right) $$
Since \( z' \) is an n-th root, raising it to the power of \( n \) must yield \( z \):
$$ (z')^n = z $$
Substituting the polar forms of \( z \) and \( z' \):
$$ \left( d' \cdot \left( \cos a' + i \sin a' \right) \right)^n = d \cdot \left( \cos a + i \sin a \right) $$
Applying the properties of exponentiation:
$$ (d')^n \cdot \left( \cos a' + i \sin a' \right)^n = d \cdot \left( \cos a + i \sin a \right) $$
From this, it follows that \( d' \) must be the n-th root of \( d \):
$$ d' = \sqrt[n]{d} $$
Substituting this into our equation:
$$ \sqrt[n]{d} \cdot \left( \cos a' + i \sin a' \right)^n = d \cdot \left( \cos a + i \sin a \right) $$
Since the cosine and sine functions are periodic with period \( 2\pi \), we account for all possible angles by writing:
$$ \sqrt[n]{d} \cdot \left( \cos a' + i \sin a' \right)^n = d \cdot \left( \cos (a + 2\pi k) + i \sin (a + 2\pi k) \right) $$
Applying De Moivre’s Theorem on complex number exponentiation, we expand the left-hand side:
$$ \sqrt[n]{d} \cdot \left( \cos (n a') + i \sin (n a') \right) = d \cdot \left( \cos (a + 2\pi k) + i \sin (a + 2\pi k) \right) $$
Explanation: To see why this works, consider the special case where \( n = 2 \). We expand:
$$ (\cos a + i \sin a)^2 $$
Using the binomial expansion:
$$ \cos^2 a + 2i \cos a \sin a + i^2 \sin^2 a $$
Since \( i^2 = -1 \), this simplifies to:
$$ \cos^2 a + 2i \cos a \sin a - \sin^2 a $$
Using trigonometric double-angle identities:
$$ \cos^2 a - \sin^2 a = \cos 2a $$
$$ 2 \sin a \cos a = \sin 2a $$
So we obtain:
$$ \cos 2a + i \sin 2a $$
Comparing both sides of the equation, we deduce that:
$$ n a' = a + 2\pi k $$
Solving for \( a' \):
$$ a' = \frac{a + 2\pi k}{n} $$
Thus, for any complex number \( z \), expressed in polar form as:
$$ z = d \cdot \left( \cos a + i \sin a \right) $$
if \( z' \) is an n-th root of \( z \), we have:
$$ z' = \sqrt[n]{z} $$
which means:
$$ d' \cdot \left( \cos a' + i \sin a' \right) = \sqrt[n]{z} $$
Substituting our previously found expressions for \( d' \) and \( a' \):
$$ \sqrt[n]{d} \cdot \left( \cos \frac{a + 2\pi k}{n} + i \sin \frac{a + 2\pi k}{n} \right) = \sqrt[n]{z} $$
This is precisely the formula we set out to prove.
An Alternative Method for Computing Roots
Once we have found the first n-th root of a complex number, we can derive the remaining roots by multiplying this solution by the n-th roots of unity.
The general formula for obtaining all n-th roots is:
$$ \sqrt[n]{d} \cdot \left( \cos \frac{\alpha}{n} + i \sin \frac{\alpha}{n} \right) \cdot \sqrt[n]{1} $$
Since the n-th roots of unity satisfy:
$$ \sqrt[n]{1} = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \quad k = 0,1,\dots, n-1 $$
we can rewrite the formula as:
$$ \sqrt[n]{d} \cdot \left( \cos \frac{\alpha}{n} + i \sin \frac{\alpha}{n} \right) \cdot \left( \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} \right) $$
Example: Finding the Square Roots of \( i \)
Let's revisit the complex number:
$$ z = 0 + i $$
In polar form, this is:
$$ z = 1 \cdot \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) $$
Since we are computing the square roots (\( n = 2 \)), there are two solutions.
The principal root (for \( k = 0 \)) is:
$$ \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} $$
Note: This result was derived in the previous example. For reference, the derivation follows:
$$ \sqrt{z} = \sqrt{1} \cdot \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) $$
Computing the Second Root Using Roots of Unity
Rather than repeating the full calculation for \( k = 1 \), we use the fact that the second root can be found by multiplying the principal root by the square root of unity.
$$ \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \cdot \left( \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} \right) $$
Substituting \( k = 1 \) and \( n = 2 \):
$$ \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \cdot \left( \cos \pi + i \sin \pi \right) $$
Using the multiplication formula for complex numbers in polar form, we apply angle addition:
$$ \cos \left( \frac{\pi}{4} + \pi \right) + i \sin \left( \frac{\pi}{4} + \pi \right) $$
Since \( n = 2 \), we compute:
$$ \cos \left( \frac{\pi}{4} + \frac{2\pi}{2} \right) + i \sin \left( \frac{\pi}{4} + \frac{2\pi}{2} \right) $$
$$ \cos \left( \frac{\pi + 4\pi}{4} \right) + i \sin \left( \frac{\pi + 4\pi}{4} \right) $$
$$ \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} $$
This result is identical to the one obtained using direct computation.
Verification
To confirm our approach, we compare it with the explicit calculation for \( k = 1 \) from the previous example:
$$ \sqrt{z} = \sqrt{1} \cdot \left( \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) $$
which simplifies to:
$$ \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} $$
Thus, the alternative method gives the same result as direct computation.
Generalizing the Method
This approach provides an efficient way to compute all n-th roots of a complex number:
- First, compute the principal root (for \( k = 0 \)).
- Then, obtain the remaining roots by multiplying the principal root by successive n-th roots of unity.
This avoids redundant calculations and provides a structured method for finding all n-th roots of any complex number.