Multiplying Complex Numbers in Trigonometric Form

Given two complex numbers in trigonometric form: $$ z= d \cdot ( \cos a + i \cdot \sin a) $$ $$ z'= d' \cdot ( \cos a' + i \cdot \sin a') $$ their product is found by multiplying their moduli and adding their arguments: $$ z \cdot z' = (d \cdot d') \cdot [ \cos(a+a') + i \cdot \sin(a+a') ] $$

A Practical Example

Let's consider two complex numbers:

$$ z=1+3i $$

$$ z'=4+2i $$

Their product is:

$$ z \cdot z' = $$

$$ (1+3i) \cdot (4+2i) = $$

$$ 4 + 2i + 12i +6i^2 = $$

$$ 4 + 14i - 6 = $$

$$ = -2 + 14i $$

Now, let's verify the result using the trigonometric form.

$$ z = 3.16 \cdot ( \cos 71.57° + i \cdot \sin 71.57° ) $$

$$ z' = 4.47 \cdot ( \cos 26.57° + i \cdot \sin 26.57° ) $$

Explanation. The angles are measured in degrees, while \( d \) and \( d' \) represent the magnitudes of the respective complex numbers.
The two complex numbers in trigonometric form
For readability, I've rounded the values of \( d \) and \( d' \): $$ d = \sqrt{1^2+3^2}=\sqrt{10} \approx 3.16 \\ d' = \sqrt{4^2+2^2}=\sqrt{20} \approx 4.47 $$

Applying the multiplication formula for complex numbers in trigonometric form:

$$ z \cdot z' = (d \cdot d') \cdot [ \cos(a+a') + i \cdot \sin(a+a') ] = $$

$$ (3.16 \cdot 4.47) \cdot [ \cos(71.57°+26.57°) + i \cdot \sin(71.57°+26.57°) ] = $$

$$ 14.1252 \cdot [ \cos(98.14°) + i \cdot \sin(98.14°) ] = $$

$$ 14.1252 \cdot \cos(98.14°) + 14.1252 \cdot i \cdot \sin(98.14°) = $$

$$ -2 + 14 i $$

As expected, we get the same result!

Result of the multiplication

The Proof

A complex number can also be written in trigonometric form as:

$$ z=x+i \cdot y $$

which is equivalent to:

$$ z= d \cdot ( \cos a + i \cdot \sin a) $$

Now, given two complex numbers \( z \) and \( z' \) in trigonometric form:

$$ z= d \cdot ( \cos a + i \cdot \sin a) $$ $$ z'= d' \cdot ( \cos a' + i \cdot \sin a') $$

Let's compute their product algebraically:

$$ z \cdot z' = $$

$$ d \cdot ( \cos a + i \cdot \sin a) \cdot d' \cdot ( \cos a' + i \cdot \sin a') = $$

$$ (d \cdot d' ) \cdot [ ( \cos a + i \cdot \sin a) \cdot ( \cos a' + i \cdot \sin a') ] = $$

Expanding the expression:

$$ (d \cdot d' ) \cdot [ \cos a \cdot ( \cos a' ) + \cos a \cdot ( i \cdot \sin a' ) + i \cdot \sin a \cdot ( \cos a' ) + i \cdot \sin a \cdot ( i \cdot \sin a') ] = $$

Since \( i^2 = -1 \), we simplify:

$$ (d \cdot d' ) \cdot [ \cos a \cdot \cos a' + i \cdot \cos a \cdot \sin a' + i \cdot \sin a \cdot \cos a' - \sin a \cdot \sin a' ] = $$

Rearranging terms:

$$ (d \cdot d' ) \cdot [ ( \cos a \cdot \cos a' - \sin a \cdot \sin a' ) + i \cdot ( \cos a \cdot \sin a' + \sin a \cdot \cos a' ) ] = $$

Note. From trigonometry, we know the angle sum identities: $$ \sin (A+B) = \sin A \cos B + \cos A \sin B $$ $$ \sin (A-B) = \sin A \cos B - \cos A \sin B $$ $$ \cos(A+B) = \cos A \cos B - \sin A \sin B $$ $$ \cos(A-B) = \cos A \cos B + \sin A \sin B $$

Using these identities, we obtain:

$$ (d \cdot d' ) \cdot [ \cos (a+a') + i \cdot ( \sin(a+a') ] = $$

Thus, we have derived the formula for multiplying complex numbers in trigonometric form.

And so, the proof is complete. 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Complex Numbers