Dividing Complex Numbers in Trigonometric Form

For two complex numbers expressed in trigonometric form: $$ z = d \cdot ( \cos a + i \cdot \sin a ) $$ $$ z' = d' \cdot ( \cos a' + i \cdot \sin a' ) $$ you can derive their quotient using the formula: $$ \frac{z}{z'} = \frac{d}{d'} \cdot [ \cos (a-a') + i \cdot \sin (a-a') ] $$

Working Through an Example

Consider the complex numbers:

$$ z=1+3i $$

$$ z'=4+2i $$

To divide these, apply the formula:

$$ \frac{x+iy}{x'+iy'} = \frac{xx'+yy'}{x'^2+y'^2}+i \cdot \frac{x'y-xy'}{x'^2+y'^2} $$

$$ \frac{z}{z'} = \frac{1+i3}{4+i2} = \frac{1\cdot4+3\cdot2}{4^2+2^2}+i \cdot \frac{4\cdot3-1\cdot2}{4^2+2^2} $$

$$ \frac{4+6}{16+4}+i \cdot \frac{12-2}{16+4} $$

$$ \frac{10}{20}+i \cdot \frac{10}{20} $$

$$ \frac{1}{2}+i \cdot \frac{1}{2} $$

Let's redo the calculation using trigonometric forms:

$$ z = 3.16 \cdot ( \cos 71.57° + i \cdot \sin 71.57° ) $$

$$ z' = 4.47 \cdot ( \cos 26.57° + i \cdot \sin 26.57° ) $$

Explanation: Angles are measured in degrees and the values d and d' represent the magnitudes of the vectors.
the two complex numbers in trigonometric form
To simplify, we approximate the vector lengths: $$ d = \sqrt{1^2+3^2}=\sqrt{10} ≅ 3.16 \\ d' = \sqrt{4^2+2^2}=\sqrt{20}≅ 4.47 $$

Now, applying the trigonometric division formula:

$$ \frac{z}{z'} = \frac{d}{d'} \cdot [ \cos (71.57°-26.57°) + i \cdot \sin (71.57°-26.57°) ] = $$

$$ 0.706 \cdot [ \cos (45°) + i \cdot \sin (45°) ] = $$

$$ 0.706 \cdot [ 0.70710678118 + i \cdot 0.70710678118 ] = $$

$$ 0.5 + i \cdot 0.5 $$

The outcomes match.

Demonstrating the Formula

Consider two complex numbers given in trigonometric form:

$$ z = d \cdot ( \cos a + i \cdot \sin a ) \\ z' = d' \cdot ( \cos a' + i \cdot \sin a' ) $$

For their division:

$$ \frac{z}{z'} = \frac{ d \cdot ( \cos a + i \cdot \sin a ) }{ d' \cdot ( \cos a' + i \cdot \sin a' ) } \cdot \frac{ d' \cdot ( \cos a' - i \cdot \sin a' ) }{ d' \cdot ( \cos a' - i \cdot \sin a' ) } = $$

Multiplying the numerator and the denominator by the conjugate of the denominator simplifies to:

$$ \frac{ d \cdot ( \cos a + i \cdot \sin a ) }{ d' \cdot ( \cos a' + i \cdot \sin a' ) } \cdot \frac{ ( \cos a' - i \cdot \sin a' ) }{ ( \cos a' - i \cdot \sin a' ) } = $$

$$ \frac{d}{d'} \cdot \frac{ \cos a \cdot \cos a' - \cos a \cdot i \cdot \sin a' + i \cdot \sin a \cdot \cos a' - i^2 \cdot \sin a \cdot \sin a' }{ \cos^2 a' - \cos a' \cdot i \cdot \sin a' + i \cdot \sin a' \cdot \cos a' - i^2 \cdot \sin^2 a' } = $$

With the identity i2 = -1:

$$ \frac{d}{d'} \cdot \frac{ \cos a \cdot \cos a' - \cos a \cdot i \cdot \sin a' + i \cdot \sin a \cdot cos a' + \sin a \cdot \sin a' }{ \cos^2 a' - \cos a' \cdot i \cdot sin a' + i \cdot sin a' \cdot \cos a' + \sin^2 a' } = $$

$$ \frac{d}{d'} \cdot \frac{ \cos a \cdot \cos a' - \cos a \cdot i \cdot \sin a' + i \cdot \sin a \cdot \cos a' + \sin a \cdot \sin a' }{ \cos^2 a' + \sin^2 a' } = $$

After applying the trigonometric identities:

$$ \frac{d}{d'} \cdot \frac{ \cos a \cdot \cos a' - \cos a \cdot i \cdot \sin a' + i \cdot \sin a \cdot \cos a' + \sin a \cdot \sin a' }{ 1 } = $$

$$ \frac{d}{d'} \cdot [ \cos a \cdot \cos a' - \cos a \cdot i \cdot \sin a' + i \cdot \sin a \cdot \cos a' + \sin a \cdot \sin a' ] = $$

Note: Trigonometric addition and subtraction formulas dictate: $$ \sin (A+B) = \sin A \cos B + \cos A \sin B $$ $$ \sin (A-B) = \sin A \cos B - \cos A sin B $$ $$ \cos(A+B) = \cos A \cos B - \sin A \sin B $$ $$ \cos(A-B) = \cos A \cos B + \sin A sin B $$

$$ \frac{d}{d'} \cdot [ ( \cos a \cdot \cos a' + \sin a \cdot \sin a' ) + i \cdot ( \sin a \cdot \cos a' - \cos a \cdot \sin a' ) ] = $$

$$ \frac{d}{d'} \cdot [ \cos (a-a') + i \cdot \sin a-a' ]  $$

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Complex Numbers