Operations with Complex Numbers

Complex numbers follow the same fundamental operations as real numbers: addition, multiplication, subtraction, and division.

Adding Complex Numbers

Given two complex numbers \((x+iy)\) and \((x'+iy')\), their sum is calculated as: $$ (x+iy) + (x'+iy') = (x+x')+i(y+y') $$

The process is straightforward: simply add the real parts together and the imaginary parts together, just as you would with real numbers.

Example

Consider these two complex numbers:

$$ 3+i2 $$ $$ 4+i7 $$

Adding them step by step:

$$ (3+i2) + (4+i7) = $$

$$ 3+i2 + 4+i7 = $$

$$ (3+4)+i(2+7) = $$

$$ = 7+i9 $$

Note: A quicker way to add complex numbers is by treating them as coordinate pairs in the complex plane and adding the corresponding components. $$ (3+i2) + (4+i7) = $$ $$ (3,2)+(4,7) $$ $$ (3+4,2+7) $$ $$ (7,9) $$ These coordinates correspond to the complex number $$ 7+i9 $$ The result is the same.

Subtracting Complex Numbers

Given two complex numbers \((x+iy)\) and \((x'+iy')\), their difference is calculated as: $$ (x+iy) - (x'+iy') = (x-x')+i(y-y') $$

The approach is similar to addition—subtract the real parts and the imaginary parts separately, following the usual algebraic rules.

Example

Consider these two complex numbers:

$$ 4+i7 $$ $$ 3+i2 $$

Subtracting them step by step:

$$ (4+i7) - (3+i2) = $$

$$ 4+i7 -3-i2 = $$

$$ (4-3)+i(7-2) = $$

$$ = 1+i5 $$

Note: Just like with addition, we can represent the complex numbers as coordinate pairs and subtract their components separately. $$ (4+i7) - (3+i2) = $$ $$ (4,7)-(3,2) $$ $$ (4-3,7-2) $$ $$ (1,5) $$ These coordinates correspond to the complex number $$ 1+i5 $$ The result remains the same.

Multiplying Complex Numbers

The product of two complex numbers follows this formula: $$ (x+iy) \cdot (x'+iy') = (xx'-yy')+i(xy'+x'y) $$

Unlike addition and subtraction, multiplication requires an understanding of the imaginary unit properties: \( i = \sqrt{-1} \) and \( i^2 = -1 \).

Note: The multiplication formula changes when working with trigonometric form: $$ z \cdot z' = (d \cdot d') \cdot [ \cos(a+a') + i \cdot \sin(a+a') ] $$ In exponential form, the multiplication is expressed as: $$ z \cdot z' = ( d \cdot e^{ia } ) \cdot ( d' \cdot e^{ia'} ) = ( d \cdot d' ) \cdot e^{i(a+a')} $$

Example

Consider these two complex numbers:

$$ 4+i7 $$ $$ 3+i2 $$

Multiplying them step by step:

$$ (4+i7) \cdot (3+i2) = $$

Using the multiplication formula:

$$ (x+iy) \cdot (x'+iy') = (xx'-yy')+i(xy'+x'y) = $$

$$ (4+i7) \cdot (3+i2) = ((4 \cdot 3)-(7 \cdot 2))+i((4 \cdot 2)+(3 \cdot 7)) = $$

$$ (12-14)+i(8+21) = $$

$$ = -2+i29 $$

Note: The same result can be obtained by expanding the expression using standard algebraic rules and substituting \( i^2 = -1 \), without relying directly on the multiplication formula. $$ (4+i7) \cdot (3+i2) = $$ $$ (4 \cdot 3 ) + (4 \cdot i2) + (i7 \cdot 3 ) + (i7 \cdot i2) $$ $$ 12 + i8 + i21 + i^2 14 = $$ $$ 12 + i8 + i21 + (-1) \cdot 14 = $$ $$ (12-14) + i (8+21) = $$ $$ = -2 + i \cdot 29 $$ The result is the same.

Dividing Complex Numbers

Given two complex numbers \( x+iy \) and \( x'+iy' \), as long as the denominator is nonzero, division is performed using the following formula: $$ \frac{x+iy}{x'+iy'} = \frac{xx'+yy'}{x'^2+y'^2}+i \cdot \frac{x'y-xy'}{x'^2+y'^2} $$ Alternatively, division can be carried out by multiplying both the numerator and denominator by the conjugate of the denominator: $$ \frac{x+iy}{x'+iy'} = \frac{x+iy}{x'+iy'} \cdot \frac{x'-iy'}{x'-iy'} $$

In trigonometric form, division follows this formula:

$$ \frac{z}{z'} = \frac{d}{d'} \cdot [ \cos (a-a') + i \cdot \sin (a-a') ] $$

For the exponential form, it is expressed as:

$$ \frac{z}{z'} = \frac{d \cdot e^{ia }}{d' \cdot e^{ia'}} = \left( \frac{d}{d'} \right) \cdot e^{i(a-a')} $$

Example

Let’s divide the following two complex numbers:

$$ 3+i2 $$ $$ 4+i7 $$

Using the division formula:

$$ \frac{ xx'+yy' }{ x'^2 + y'^2 } + i \cdot \frac{x'y-xy'}{x'^2 + y'^2} = $$

$$ \frac{ (3 \cdot 4)+ (2 \cdot 7) }{ 4^2 + 7^2 } + i \cdot \frac{(4 \cdot 2) - (3 \cdot 7) }{4^2 + 7^2} = $$

$$ \frac{ 12+14 }{ 16 + 49 } + i \cdot \frac{8 - 21 }{16 + 49} = $$

$$ = \frac{26 }{ 65 } + i \cdot \frac{-13 }{65} $$

$$ = \frac{26 }{ 65 } - i \cdot \frac{13 }{65} $$

Note: The same result can be obtained by using algebraic properties and the imaginary unit \( i^2=-1 \). $$ \frac{3+i2}{4+i7} = $$ Multiply both the numerator and denominator by the conjugate of the denominator: $$ \frac{3+i2}{4+i7} \cdot \frac{4-i7}{4-i7} = $$ Expanding: $$ \frac{(3+i2) \cdot (4-i7) }{(4+i7) \cdot (4-i7) } = $$ $$ \frac{12-i21+i8-i^214 }{ 16-i28+i28-i^249 } = $$ Since \( i^2=-1 \), we simplify: $$ \frac{12-i21+i8-(-1) \cdot 14 }{ 16-i28+i28-(-1) \cdot 49 } = $$ $$ \frac{12-i21+i8 +14 }{ 16+49} = $$ $$ \frac{(12+14)+i(8-21) }{ 16+49} = $$ $$ \frac{26+i(-13) }{65} = $$ $$ = \frac{26 }{ 65 } - i \cdot \frac{13 }{65} $$

Raising a Complex Number to a Power

The power of a complex number \( z=x+yi \) can be computed using binomial expansion, keeping in mind that \( i^2=-1 \): $$ z^n = (x+yi)^2 $$

In trigonometric form, exponentiation follows the rule:

$$ z^n = d^n \cdot ( \cos (n \cdot a) + i \cdot \sin (n \cdot a) ) $$

In exponential form, it is expressed as:

$$ z^n = d^n \cdot e^{ia \cdot n } $$

Example

Let's calculate the square of the complex number \( z=1+3i \):

$$ z^2 = (1+3i)^2 $$

Expanding using the binomial formula:

$$ z^2 = 1^2+2 \cdot 3i + (3i)^2 $$

$$ z^2 = 1+6i + 9i^2 $$

Since \( i^2=-1 \), we substitute:

$$ z^2 = 1+6i + 9 \cdot (-1) $$

$$ z^2 = 1+6i -9 $$

$$ z^2 = -8+6i $$

Thus, the square of the complex number is: \( z^2=(1+3i)^2=-8+6i \).

Note: The exponentiation of a complex number can also be calculated using its trigonometric form: $$ z = \sqrt{10} \cdot ( \cos 71.57^\circ + i \cdot \sin 71.57^\circ ) $$ Applying the exponentiation formula with \( n=2 \): $$ z^n = d^n \cdot ( \cos (n \cdot a) + i \cdot \sin (n \cdot a) ) $$ $$ z^2 = ( \sqrt{10} )^2 \cdot ( \cos (2 \cdot 71.57^\circ) + i \cdot \sin (2 \cdot 71.57^\circ) ) $$ $$ z^2 = 10 \cdot ( \cos (143.14^\circ) + i \cdot \sin (143.14^\circ) ) $$ $$ z^2 = -8 + i 6 $$

Square of a Complex Number

The square of a complex number \((x,y)^2\) can also be computed using the following formula: $$ (x,y)^2 = (x^2-y^2,2xy) $$

Example

Let's find the square of the complex number:

$$ z = (2,3) $$

Using the formula:

$$ z^2 = (x,y)^2 = (x^2-y^2,2xy) $$

Substituting \( x=2 \) and \( y=3 \):

$$ (2,3)^2 = (2^2-3^2,2 \cdot 2 \cdot 3) $$

$$ (2,3)^2 = (4-9,12) $$

$$ (2,3)^2 = (-5,12) $$

Thus, the square of the complex number is \( (-5,12) \).

Expressed in algebraic form:

$$ z^2 = -5 + 12 i $$

Verification: Let's confirm the result by computing the square in algebraic form. Given that \( z=(2,3)=2+3i \): $$ z^2 = (2+3i)^2 $$ $$ z^2 = 2^2+2 \cdot 2 \cdot 3i + (3i)^2 $$ $$ z^2 = 4+12i + 9i^2 $$ Since \( i^2=-1 \), we substitute: $$ z^2 = 4+12i + 9 \cdot (-1) $$ $$ z^2 = 4+12i -9 $$ $$ z^2 = -5+12i $$ The result is the same.

Cube of a Complex Number

To compute the cube of a complex number in algebraic form, we use the binomial expansion formula: $$ z^3=(a+bi)^3=a^3+3a^2(bi)+3a(bi)^2+(bi)^3 $$ remembering that \( i^2=-1 \).

Example

Let's compute the cube of the complex number \( z=2+3i \):

$$ z^3 = (2+3i)^3 $$

Expanding the binomial:

$$ z^3 = 2^3+3 \cdot 2^2 \cdot 3i + 3 \cdot 2 \cdot (3i)^2 + (3i)^3 $$

$$ z^3 = 8+36i + 54 i^2 + 27i^3 $$

Since \( i^2=-1 \):

$$ z^3 = 8+36i + 54 \cdot (-1) + 27i^3 $$

$$ z^3 = 8+36i - 54 + 27i^3 $$

$$ z^3 = -46+36i + 27i^3 $$

Knowing that \( i^3=i^2 \cdot i \) and \( i^2=-1 \):

$$ z^3 = -46+36i + 27 \cdot (-1) \cdot i $$

$$ z^3 = -46+36i - 27 i $$

$$ z^3 = -46+9i $$

Thus, the cube of the complex number is \( z^3=-46+9i \).

Root of a Complex Number

To compute the \( n \)th root of a complex number, we first express it in trigonometric form: $$ z = d \cdot [ \cos a + i \cdot \sin a ] $$ and then apply the following formula: $$ \sqrt[n]{z} = \sqrt[n]{d} \cdot \left[ \cos \frac{(a+2\pi k)}{n} + i \cdot \sin \frac{(a+2\pi k) }{n} \right] $$ for \( k \) ranging from 0 to \( n-1 \).

Using trigonometric form, the \( n \)th root is calculated as:

$$ \sqrt[n]{z} = \sqrt[n]{d} \cdot \left[ \cos \frac{(a+2\pi k)}{n} + i \cdot \sin \frac{(a+2\pi k) }{n} \right] $$

In exponential form, it is expressed as:

$$ \sqrt[n]{z} = d^{\frac{1}{n}} \cdot e^{i \cdot \frac{(a+2\pi k)}{n}} $$

Example

Consider the complex number:

$$ z = -8 + i 6 $$

Expressed in trigonometric form:

$$ z = 10 \cdot ( \cos (143.14^\circ) + i \cdot \sin (143.14^\circ) ) $$

In radians:

$$ z = 10 \cdot ( \cos (2.49 \text{ rad}) + i \cdot \sin (2.49 \text{ rad}) ) $$

Computing the square root (\( n=2 \)), which has two solutions:

For \( k=0 \):

$$ \sqrt[2]{z} = \sqrt[2]{10} \cdot \left[ \cos \frac{2.49}{2} + i \cdot \sin \frac{ 2.49 }{2} \right] $$

$$ = 1 + 3 i $$

For \( k=1 \):

$$ \sqrt[2]{z} = \sqrt[2]{10} \cdot \left[ \cos \frac{ (2.49+2\pi)}{2} + i \cdot \sin \frac{ (2.49+2\pi) }{2} \right] $$

$$ = - 1 - 3 i $$

Reciprocal of a Complex Number

The reciprocal of a complex number \( z_1 \) is another complex number \( z_2 \) such that their product equals 1: $$ z_1 \cdot z_2 = 1 $$

If \( z_1 \neq 0 \), its reciprocal is given by:

$$ z_2 = \frac{1}{z_1} = \frac{\overline{z_1}}{|z_1|^2} $$

where \( \overline{z_1} \) is the complex conjugate of \( z_1 \) and \( |z_1|^2 \) is its squared modulus: \( z_1 \cdot \overline{z_1} \).

For example, if \( z_1 = a + bi \), where \( a, b \in \mathbb{R} \), its reciprocal is: $$ z_2 = \frac{a - bi}{a^2 + b^2} $$

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Complex Numbers