Multiplying Imaginary Numbers

The product of two imaginary numbers is a real number: $$ (0,a) \cdot (0,b) = (- a \cdot b, 0) = - a \cdot b $$. Writing these numbers in algebraic form, where (0,b) = bi and (0,a) = ai, we find: $$ ai \cdot bi = - a \cdot b $$

The Proof

Let’s examine two imaginary numbers:

$$ z_1 = (0,a)=ai $$ $$ z_2 = (0,b)=bi $$

When multiplying these two imaginary numbers in Cartesian form, (0,a) and (0,b), we use the complex number multiplication rule:

$$ z_1 \cdot z_2 = (0,a) \cdot (0,b) $$

$$ z_1 \cdot z_2 = (0 \cdot 0 – a \cdot b, 0 \cdot b + a \cdot 0)$$

$$ z_1 \cdot z_2 = (0 – ab, 0 + 0)$$

$$ z_1 \cdot z_2 = ( – ab, 0)$$

Thus, the result is the real number -ab.

We get the same result when calculating the product of imaginary numbers in algebraic form:

$$ z_1 \cdot z_2 = ai \cdot bi $$

Using the rules of algebraic multiplication:

$$ z_1 \cdot z_2 = a \cdot b \cdot i \cdot i $$

$$ z_1 \cdot z_2 = a \cdot b \cdot i^2 $$

Since \( i^2 = -1 \):

$$ z_1 \cdot z_2 = a \cdot b \cdot (-1) $$

$$ z_1 \cdot z_2 = -a \cdot b $$

Note. I find it easy to remember the algebraic calculation because it follows standard algebraic rules. You just need to keep in mind that the square of the imaginary unit is \(-1\), i.e., \( i^2 = -1 \).

A Practical Example

Let’s take two imaginary numbers:

$$ (0,2) = 2i $$ $$ (0,3) = 3i $$

The product of these two imaginary numbers is the real number (-6,0):

$$ (0,2) \cdot (0,3) = (0 \cdot 0 – 2 \cdot 3, 0 \cdot 3 + 2 \cdot 0) = (-6,0) $$

The same result is achieved when the two imaginary numbers are written in algebraic form:

$$ 2i \cdot 3i = 6i^2 = 6 \cdot (-1) = -6 $$

The result is always the real number (-6,0) = -6.

Note. When imaginary numbers are expressed in Cartesian form, (0,b), multiplication follows the complex number multiplication rule: $$ (a,b) \cdot (c,d) = (ac-bd, ad+bc) $$. Conversely, when imaginary numbers are expressed in algebraic form, you can simply apply the algebraic product of monomials: $$ ai \cdot bi = a \cdot b \cdot i^2 = a \cdot b \cdot (-1) = -ab.$$

Additional Notes

Here are a few additional points about multiplying imaginary numbers:

  • Commutative Property
    The multiplication of imaginary numbers is commutative: swapping the order of the factors does not change the result. $$ ai \cdot bi = bi \cdot ai $$

    Example: $$ 2i \cdot 3i = 3i \cdot 2i $$ $$ 2 \cdot 3 \cdot i^2 = 3 \cdot 2 \cdot i^2 $$ $$ 6 \cdot (-1) = 6 \cdot (-1) $$ $$ -6 = -6 $$

  • Associative Property
    The multiplication of imaginary numbers satisfies the associative property: grouping the factors in different ways does not affect the result. $$ (ai \cdot bi) \cdot ci = ai \cdot (bi \cdot ci) $$

    Example: $$ (2i \cdot 3i) \cdot 4i = 2i \cdot (3i \cdot 4i) $$ $$ (6i^2) \cdot 4i = 2i \cdot (12i^2) $$ $$ (6 \cdot (-1)) \cdot 4i = 2i \cdot (12 \cdot (-1)) $$ $$ (-6) \cdot 4i = 2i \cdot (-12) $$ $$ -24i = -24i $$

And so on.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Complex Numbers