Cosine subtraction formula

The cosine subtraction formula is $$ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta $$

Therefore, it’s never correct to write:

$$ \cos (\alpha - \beta) = \cos \alpha - \cos \beta $$

A practical example

The cosine of 90° (π/2) is 1, while the cosine of 60° (π/3) is 1/2:

$$ \cos \frac{\pi}{2} = 1 $$

$$ \cos \frac{\pi}{3} = \frac{1}{2} $$

Now, I need to calculate the cosine of the difference between 90° and 60°:

$$ \cos ( \frac{\pi}{2} - \frac{\pi}{3} ) $$

Using the cosine subtraction formula with α = π/2 and β = π/3, we get:

$$ \cos ( \frac{\pi}{2} - \frac{\pi}{3} ) = \cos \frac{\pi}{2} \cos \frac{\pi}{3} + \sin \frac{\pi}{2} \sin \frac{\pi}{3} $$

$$ \cos ( \frac{\pi}{2} - \frac{\pi}{3} ) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{\sqrt{3}}{2} $$

$$ \cos ( \frac{\pi}{2} - \frac{\pi}{3} ) = \frac{\sqrt{3}}{2} $$

Note: Notice that $$ \cos ( \frac{\pi}{2} - \frac{\pi}{3} ) \ne \cos ( \frac{\pi}{2} ) - \cos ( \frac{\pi}{3} ) = 1 - \frac{1}{2} $$

Verification

$$ \cos ( \frac{\pi}{2} - \frac{\pi}{3} ) = \cos ( \frac{3\pi - 2 \pi}{6} ) = \cos ( \frac{\pi}{6} ) = \frac{ \sqrt{3} }{2} $$

The proof

Let’s draw two angles, α and β, on a unit circle, with α > β.

two angles alpha and beta

The difference between α and β is the angle α - β:

the difference is the angle alpha minus beta

Now, let’s consider the same angle α - β, but starting from the origin side:

the difference angle measured from the origin side

Triangles OAB and OCD are congruent (identical) because they share the same angles and side lengths:

two congruent triangles

Thus, segments AB and CD are of equal length:

$$ \overline{AB} = \overline{CD} $$

This means the distance between points A and B is the same as the distance between points C and D:

$$ \overline{AB}^2 = (x_A - x_B)^2 + (y_A - y_B)^2 $$

$$ \overline{CD}^2 = (x_C - x_D)^2 + (y_C - y_D)^2 $$

Since the distances are the same, we can write:

$$ \overline{AB}^2 = \overline{CD}^2 $$

$$ (x_A - x_B)^2 + (y_A - y_B)^2 = (x_C - x_D)^2 + (y_C - y_D)^2 $$

Next, we substitute the x and y coordinates with their corresponding trigonometric functions:

We know that xA = cos(α - β) and yA = sin(α - β):

$$ (\cos(α-β) - x_B)^2 + (\sin(α-β) - y_B)^2 = (x_C - x_D)^2 + (y_C - y_D)^2 $$

point xA

Since xB = cos(0) = 1 and yB = sin(0) = 0, we have:

$$ (\cos(α-β) - 1)^2 + (\sin(α-β) - 0)^2 = (x_C - x_D)^2 + (y_C - y_D)^2 $$

$$ (\cos(α-β) - 1)^2 + (\sin(α-β))^2 = (x_C - x_D)^2 + (y_C - y_D)^2 $$

point B

Now, knowing that xC = cos(α) and yC = sin(α),

$$ (\cos(α-β) - 1)^2 + (\sin(α-β))^2 = ( \cos(α) - x_D)^2 + ( \sin(α) - y_D)^2 $$

point C

Since xD = cos(β) and yD = sin(β),

$$ (\cos(α-β) - 1)^2 + (\sin(α-β))^2 = (\cos(α) - \cos(β) )^2 + (\sin(α) - \sin(β))^2 $$

point D

Now we simplify and expand the binomials:

$$ \cos^2(α-β) - 2 \cos(α-β) + 1^2 + \sin^2(α-β) = \cos^2(α) - 2 \cos(α) \cos(β) + \cos^2(β) + \\ + \sin^2(α) - 2 \sin(α) \sin(β) + \sin^2(β) $$

$$ \cos^2(α-β) - 2 \cos(α-β) + 1 + \sin^2(α-β) = \cos^2(α) - 2 \cos(α) \cos(β) + \cos^2(β) + \\ + \sin^2(α) - 2 \sin(α) \sin(β) + \sin^2(β) $$

According to the Pythagorean identity, the sum of the squares of sine and cosine for any angle is equal to 1:

$$ [ \cos^2(α-β) + \sin^2(α-β) ] - 2 \cos(α-β) + 1 = [ \cos^2(α) + \sin^2(α) ] - 2 \cos(α) \cos(β) + \\ - 2 \sin(α) \sin(β) + [ \cos^2(β) + \sin^2(β) ] $$

$$ 1 - 2 \cos(α-β) + 1 = 1 - 2 \cos(α) \cos(β) - 2 \sin(α) \sin(β) + 1 $$

Thus, we get:

$$ 2 - 2 \cos(α-β) = 2 - 2 \cos(α) \cos(β) - 2 \sin(α) \sin(β) $$

Subtract 2 from both sides:

$$ 2 - 2 \cos(α-β) \color{red}{- 2} = 2 - 2 \cos(α) \cos(β) - 2 \sin(α) \sin(β) \color{red}{- 2} $$

$$ -2 \cos(α-β) = -2 \cos(α) \cos(β) - 2 \sin(α) \sin(β) $$

Multiply both sides by -1 to get positive values:

$$ -1 \cdot [ -2 \cos(α-β) ] = -1 \cdot [ -2 \cos(α) \cos(β) - 2 \sin(α) \sin(β) ] $$

$$ 2 \cos(α-β) = 2 \cos(α) \cos(β) + 2 \sin(α) \sin(β) $$

Finally, divide by 2 to get the desired formula:

$$ \cos(α-β) = \cos(α) \cos(β) + \sin(α) \sin(β) $$

And there you have it!

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous