How to Convert Degrees and Radians
The formulas for converting between degrees and radians are: $$ \alpha ° = \alpha_{rad} \cdot \frac{180°}{ \pi } $$ $$ \alpha_{rad} = \alpha ° \cdot \frac{ \pi }{ 180° } $$
A Practical Example
Consider an angle measuring 60°
$$ \alpha = 60° $$
The equivalent measure in radians is \( \frac{1}{3} \pi \)
$$ \alpha_{rad} = \alpha ° \cdot \frac{ \pi }{ 180° } $$
$$ \alpha_{rad} = 60° \cdot \frac{ \pi }{ 180° } $$
$$ \alpha_{rad} = \frac{ 1 }{ 3 } \pi $$
Example 2
Consider an angle measuring \( \frac{2}{3} \pi \) radians
$$ \alpha = \frac{2}{3} \pi \ rad $$
The equivalent measure in degrees is 120°
$$ \alpha ° = \alpha_{rad} \cdot \frac{180°}{ \pi } $$
$$ \alpha ° = \frac{2}{3} \pi \cdot \frac{180°}{ \pi } $$
$$ \alpha ° = \frac{2}{3} \cdot 180° $$
$$ \alpha ° = 120° $$
The Proof
To demonstrate the conversion formulas between degrees and radians, note that an angle in degrees is to an angle in radians as a full circle (360°) is to 2π radians.
$$ \alpha ° \ : \ \alpha_{rad} = 360° \ : \ 2 \pi $$
Therefore,
$$ \frac{ \alpha ° }{ \alpha_{rad} } = \frac{ 360° }{ 2 \pi } $$
Simplifying,
$$ \frac{ \alpha ° }{ \alpha_{rad} } = \frac{ 180° }{ \pi } $$
By isolating the angle in degrees, we obtain the first formula:
$$ \alpha ° = \alpha_{rad} \cdot \frac{ 180° }{ \pi } $$
By isolating the angle in radians, we obtain the second formula:
$$ \alpha_{rad} = \alpha ° \cdot \frac{ \pi }{ 180° } $$
And that's how it's done.