Parametric Trigonometric Equations

A parametric trigonometric equation is a trigonometric equation, whether elementary or complex, that involves a real parameter \( k \). For example: $$ \cos x = 2k - 1 $$

The solutions to a parametric trigonometric equation depend on the specific value of \( k \).

As such, a parametric trigonometric equation may have a single solution for certain values of \( k \), multiple solutions, or no solution at all for others.

How to Approach a Parametric Trigonometric Equation

To analyze a parametric trigonometric equation, I study how its solutions vary as the parameter \( k \) changes.

    A Practical Example

    Let’s consider the following trigonometric equation:

    $$ \begin{cases} 4 \cos 2x - k + 2 = 0 \\ \\ 0 \le x \le \frac{2}{3} \pi \end{cases} $$

    This is an elementary trigonometric equation.

    It is parametric because it includes a parameter \( k \), which can take any real value.

    Moreover, the analysis of this equation is restricted to the interval \( x \in [0, 2\pi/3] \).

    I first isolate the cosine function in the equation:

    $$ \begin{cases} \cos 2x = \frac{k - 2}{4} \\ \\ 0 \le x \le \frac{2}{3} \pi \end{cases} $$

    In the interval \( x \in [0, 2\pi/3] \), the argument (angle) of the function \( \cos 2x \) ranges from 0 to \( 4\pi/3 \) radians.

    $$ 2x = \begin{cases} x = 0 \rightarrow \alpha = 2 \cdot 0 = 0 \\ \\ x = \frac{2}{3} \pi \rightarrow \alpha = 2 \cdot \frac{2}{3} \pi = \frac{4}{3} \pi = \pi + \frac{1}{3} \pi \end{cases}$$

    Thus, the function \( \cos 2x \) takes values between -1 and 1 within the interval \( x \in [0, 4\pi/3] \).

    analysis of the parametric trigonometric function

    Next, I determine when the right-hand side, \((k-2)/4\), of the parametric equation falls within the interval [-1, 1].

    $$ y = \frac{k - 2}{4} $$

    This equation behaves as follows:

    • When \( k = 2 \), \( y = 0 \).
    • When \( k = 6 \), \( y = 1 \).
    • When \( k = -2 \), \( y = -1 \).
    • For \( k < -2 \) or \( k > 6 \), \( y \) lies outside the interval [-1, 1].

    Hence, the parametric equation has at least one solution for \( k \in [-2, 6] \) and no solutions outside this range.

    Next, I determine whether the equation has one or multiple solutions within \( k \in [-2, 6] \).

    In the interval \( x \in [0, 4\pi/3] \), the function \( \cos 2x \) takes the same value twice when the argument (angle) lies between \( \pi - \pi/3 \) and \( \pi + \pi/3 \).

    cosine function values repeat in an interval

    I calculate the cosine value for \( \cos 4\pi/3 \).

    I rewrite the argument \( 4\pi/3 \) in an equivalent algebraic form:

    $$ \cos \frac{4}{3} \pi = \cos (\pi + \frac{1}{3} \pi) $$

    Using the properties of associated angles for cosine:

    $$ \cos (\pi + \frac{1}{3} \pi) = \cos (\pi - \frac{1}{3} \pi) $$

    and:

    $$ \cos (\pi - \frac{1}{3} \pi) = - \cos (\frac{1}{3} \pi) $$

    This simplifies the calculation by bringing the angle into the first quadrant:

    $$ \cos \frac{4}{3} \pi = - \cos (\frac{1}{3} \pi) $$

    Knowing that the cosine of \( \pi/3 \) (60°) is \( 1/2 \):

    $$ \cos \frac{4}{3} \pi = - \frac{1}{2} $$

    Thus, the trigonometric equation has two solutions when \( \cos 2x \in [-1, -1/2] \) and a single solution when \( \cos 2x \in (-1/2, 1] \).

    $$ \begin{cases} \cos 2x = \frac{k - 2}{4} \\ \\ 0 \le x \le \frac{2}{3} \pi \end{cases} $$

    Now, I determine when the right-hand side of the parametric equation falls within the interval [-1, -1/2]:

    $$ y = \frac{k - 2}{4} $$

    The equation equals \( y = -1 \) when \( k = -2 \):

    $$ -1 = \frac{k - 2}{4} $$

    $$ -4 \cdot 1 + 2 = k $$

    $$ k = -2 $$

    The equation equals \( y = -1/2 \) when \( k = 0 \):

    $$ -\frac{1}{2} = \frac{k - 2}{4} $$

    $$ -4 \cdot \frac{1}{2} + 2 = k $$

    $$ -2 + 2 = k $$

    $$ k = 0 $$

    Therefore, within the interval \( k \in [-2, 0] \), the equation has two solutions.

    the parametric equation has two solutions for -2<k<0

    Conversely, within the interval \( k \in (0, 6] \), the equation has only one solution.

    For any other value \( k \notin [-2, 6] \), the equation has no solutions.

    And so on.

     

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Trigonometry

    Trigonometric Laws and Formulas

    Hyperbolic Functions

    Miscellaneous