Solving Systems of Trigonometric Equations
Systems of trigonometric equations can be solved algebraically by substituting each trigonometric function with a variable corresponding to its argument.
A Practical Example
Let’s work through the following system of trigonometric equations:
$$ \begin{cases} \sin x + \sin y = \frac{3}{2} \\ \\ \sin x - \sin y = - \frac{1}{2} \end{cases} $$
We substitute \( s = \sin x \) and \( t = \sin y \) to simplify the system:
$$ \begin{cases} s + t = \frac{3}{2} \\ \\ s - t = - \frac{1}{2} \end{cases} $$
The next step is to solve the system using a method of your choice, such as substitution.
From the first equation, we isolate \( s \):
$$ \begin{cases} s = \frac{3}{2} - t \\ \\ s - t = - \frac{1}{2} \end{cases} $$
Now substitute \( s = \frac{3}{2} - t \) into the second equation:
$$ \begin{cases} s = \frac{3}{2} - t \\ \\ \frac{3}{2} - t - t = - \frac{1}{2} \end{cases} $$
Simplify to find:
$$ \begin{cases} s = \frac{3}{2} - t \\ \\ - 2t = - \frac{1}{2} - \frac{3}{2} \end{cases} $$
$$ \begin{cases} s = \frac{3}{2} - t \\ \\ - 2t = - 2 \end{cases} $$
Eliminate the negative sign by multiplying through by \(-1\):
$$ \begin{cases} s = \frac{3}{2} - t \\ \\ 2t = 2 \end{cases} $$
Solve for \( t \):
$$ \begin{cases} s = \frac{3}{2} - t \\ \\ t = 1 \end{cases} $$
Substitute \( t = 1 \) back into the first equation to solve for \( s \):
$$ \begin{cases} s = \frac{3}{2} - 1 \\ \\ t = 1 \end{cases} $$
Simplify:
$$ \begin{cases} s = \frac{1}{2} \\ \\ t = 1 \end{cases} $$
The solutions to the algebraic system are:
$$ s = \frac{1}{2} $$
$$ t = 1 $$
Since \( s = \sin x \) and \( t = \sin y \):
$$ \sin x = \frac{1}{2} $$
$$ \sin y = 1 $$
Both values are within the range of the sine function, \([-1, 1]\).
The basic sine equations have solutions of the form \( \alpha + 2\pi k \) or \( \pi - \alpha + 2\pi k \):
$$ \alpha + 2\pi k \vee (\pi - \alpha) + 2\pi k $$
To find \( x \) and \( y \), we calculate the arcsine of both sides:
$$ \arcsin(\sin x) = \arcsin\left(\frac{1}{2}\right) $$
$$ \arcsin(\sin y) = \arcsin(1) $$
Taking the arcsine gives:
$$ x = \arcsin\left(\frac{1}{2}\right) $$
$$ y = \arcsin(1) $$
The arcsine of \( \frac{1}{2} \) is \( 30^\circ \) or \( \pi/6 \), while the arcsine of \( 1 \) is \( 90^\circ \) or \( \pi/2 \):
$$ x = \frac{\pi}{6} $$
$$ y = \frac{\pi}{2} $$
Thus, the solutions for \( x \), with \( \alpha = \pi/6 \), are:
$$ x = \alpha + 2\pi k \vee (\pi - \alpha) + 2\pi k $$
$$ x = \frac{\pi}{6} + 2\pi k \vee (\pi - \frac{\pi}{6}) + 2\pi k $$
$$ x = \frac{\pi}{6} + 2\pi k \vee \frac{5\pi}{6} + 2\pi k $$
For \( y \), with \( \alpha = \pi/2 \), the solutions are:
$$ y = \alpha + 2\pi k \vee (\pi - \alpha) + 2\pi k $$
$$ y = \frac{\pi}{2} + 2\pi k \vee (\pi - \frac{\pi}{2}) + 2\pi k $$
$$ y = \frac{\pi}{2} + 2\pi k $$
In conclusion, the solutions to the system are:
$$ x = \frac{\pi}{6} + 2\pi k \vee \frac{5\pi}{6} + 2\pi k \ \& \ y = \frac{\pi}{2} + 2\pi k $$
And so on.