Solving Systems of Trigonometric Equations

Systems of trigonometric equations can be solved algebraically by substituting each trigonometric function with a variable corresponding to its argument.

    A Practical Example

    Let’s work through the following system of trigonometric equations:

    $$ \begin{cases} \sin x + \sin y = \frac{3}{2} \\ \\ \sin x - \sin y = - \frac{1}{2} \end{cases} $$

    We substitute \( s = \sin x \) and \( t = \sin y \) to simplify the system:

    $$ \begin{cases} s + t = \frac{3}{2} \\ \\ s - t = - \frac{1}{2} \end{cases} $$

    The next step is to solve the system using a method of your choice, such as substitution.

    From the first equation, we isolate \( s \):

    $$ \begin{cases} s = \frac{3}{2} - t \\ \\ s - t = - \frac{1}{2} \end{cases} $$

    Now substitute \( s = \frac{3}{2} - t \) into the second equation:

    $$ \begin{cases} s = \frac{3}{2} - t \\ \\ \frac{3}{2} - t - t = - \frac{1}{2} \end{cases} $$

    Simplify to find:

    $$ \begin{cases} s = \frac{3}{2} - t \\ \\ - 2t = - \frac{1}{2} - \frac{3}{2} \end{cases} $$

    $$ \begin{cases} s = \frac{3}{2} - t \\ \\ - 2t = - 2 \end{cases} $$

    Eliminate the negative sign by multiplying through by \(-1\):

    $$ \begin{cases} s = \frac{3}{2} - t \\ \\ 2t = 2 \end{cases} $$

    Solve for \( t \):

    $$ \begin{cases} s = \frac{3}{2} - t \\ \\ t = 1 \end{cases} $$

    Substitute \( t = 1 \) back into the first equation to solve for \( s \):

    $$ \begin{cases} s = \frac{3}{2} - 1 \\ \\ t = 1 \end{cases} $$

    Simplify:

    $$ \begin{cases} s = \frac{1}{2} \\ \\ t = 1 \end{cases} $$

    The solutions to the algebraic system are:

    $$ s = \frac{1}{2} $$

    $$ t = 1 $$

    Since \( s = \sin x \) and \( t = \sin y \):

    $$ \sin x = \frac{1}{2} $$

    $$ \sin y = 1 $$

    Both values are within the range of the sine function, \([-1, 1]\).

    The basic sine equations have solutions of the form \( \alpha + 2\pi k \) or \( \pi - \alpha + 2\pi k \):

    $$ \alpha + 2\pi k \vee (\pi - \alpha) + 2\pi k $$

    To find \( x \) and \( y \), we calculate the arcsine of both sides:

    $$ \arcsin(\sin x) = \arcsin\left(\frac{1}{2}\right) $$

    $$ \arcsin(\sin y) = \arcsin(1) $$

    Taking the arcsine gives:

    $$ x = \arcsin\left(\frac{1}{2}\right) $$

    $$ y = \arcsin(1) $$

    The arcsine of \( \frac{1}{2} \) is \( 30^\circ \) or \( \pi/6 \), while the arcsine of \( 1 \) is \( 90^\circ \) or \( \pi/2 \):

    $$ x = \frac{\pi}{6} $$

    $$ y = \frac{\pi}{2} $$

    Thus, the solutions for \( x \), with \( \alpha = \pi/6 \), are:

    $$ x = \alpha + 2\pi k \vee (\pi - \alpha) + 2\pi k $$

    $$ x = \frac{\pi}{6} + 2\pi k \vee (\pi - \frac{\pi}{6}) + 2\pi k $$

    $$ x = \frac{\pi}{6} + 2\pi k \vee \frac{5\pi}{6} + 2\pi k $$

    For \( y \), with \( \alpha = \pi/2 \), the solutions are:

    $$ y = \alpha + 2\pi k \vee (\pi - \alpha) + 2\pi k $$

    $$ y = \frac{\pi}{2} + 2\pi k \vee (\pi - \frac{\pi}{2}) + 2\pi k $$

    $$ y = \frac{\pi}{2} + 2\pi k $$

    In conclusion, the solutions to the system are:

    $$ x = \frac{\pi}{6} + 2\pi k \vee \frac{5\pi}{6} + 2\pi k \ \& \ y = \frac{\pi}{2} + 2\pi k $$

    And so on.

     

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Trigonometry

    Trigonometric Laws and Formulas

    Hyperbolic Functions

    Miscellaneous