Solving the Equation sin x = sin y
The trigonometric equation sin α = sin α' is satisfied when the angles are either congruent, α = α', or supplementary, meaning α + α' = π. $$ α = α' + 2k \pi $$ or $$ α + α' = \pi + 2k \pi $$
Since sine is a periodic function with a period of 2π, this trigonometric equation has infinitely many solutions, taking into account integer multiples of a full rotation (2π).
Here, k represents any integer, positive or negative.
An Example Solution
Let's solve the following equation:
$$ \sin \left( \frac{1}{2}x + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6}x + \frac{\pi}{6} \right) $$
The angles in the two sine functions are:
$$ \alpha = \frac{1}{2}x + \frac{\pi}{2} $$
$$ \alpha' = \frac{1}{6}x + \frac{\pi}{6} $$
Using the formula for the equation sin x = sin y:
$$ α = α' + 2k \pi \ or \ α + α' = \pi + 2k \pi $$
Substituting α and α':
$$ \frac{1}{2}x + \frac{\pi}{2} = \frac{1}{6}x + \frac{\pi}{6} + 2k \pi \ or \ \frac{1}{2}x + \frac{\pi}{2} + \frac{1}{6}x + \frac{\pi}{6} = \pi + 2k \pi $$
We solve for x:
$$ \frac{1}{2}x - \frac{1}{6}x = \frac{\pi}{6} - \frac{\pi}{2} + 2k \pi \ or \ \frac{3+1}{6}x + \frac{3\pi + \pi}{6} = \pi + 2k \pi $$
$$ \frac{3 - 1}{6}x = \frac{\pi - 3\pi}{6} + 2k \pi \ or \ \frac{4}{6}x + \frac{4\pi}{6} = \pi + 2k \pi $$
$$ \frac{2}{6}x = \frac{-2\pi}{6} + 2k \pi \ or \ \frac{2}{3}x + \frac{2\pi}{3} = \pi + 2k \pi $$
$$ \frac{1}{3}x = \frac{-\pi}{3} + 2k \pi \ or \ \frac{2}{3}x = \pi - \frac{2\pi}{3} + 2k \pi $$
$$ x = 3 \left( \frac{-\pi}{3} + 2k \pi \right) \ or \ \frac{2}{3}x = \frac{3\pi - 2\pi}{3} + 2k \pi $$
$$ x = -\pi + 6k \pi \ or \ \frac{2}{3} x = \frac{\pi}{3} + 2k \pi $$
$$ x = -\pi + 6k \pi \ or \ x = \frac{3}{2} \left( \frac{\pi}{3} + 2k \pi \right) $$
$$ x = -\pi + 6k \pi \ or \ x = \frac{3}{2} \cdot \frac{\pi}{3} + \frac{3}{2} \cdot 2k \pi $$
$$ x = -\pi + 6k \pi \ or \ x = \frac{\pi}{2} + 3k \pi $$
These are all the solutions for the equation sin x = sin y
$$ x = -\pi + 6k \pi \ or \ x = \frac{\pi}{2} + 3k \pi $$
Now we can verify if these solutions satisfy the trigonometric equation.
Verification for k=0
$$ x = -\pi + 6(0) \pi \ or \ x = \frac{\pi}{2} + 3(0) \pi $$
$$ x = -\pi \ or \ x = \frac{\pi}{2} $$
Substitute the first solution x = -π into the equation:
$$ \sin \left( \frac{1}{2}x + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6}x + \frac{\pi}{6} \right) $$
$$ \sin \left( \frac{1}{2} (-\pi) + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6} (-\pi) + \frac{\pi}{6} \right) $$
$$ \sin (0) = \sin (0) $$
$$ 0 = 0 $$
Which is indeed satisfied.
Substitute the second solution x = π/2 into the equation:
$$ \sin \left( \frac{1}{2}x + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6}x + \frac{\pi}{6} \right) $$
$$ \sin \left( \frac{1}{2} \cdot \frac{\pi}{2} + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6} \cdot \frac{\pi}{2} + \frac{\pi}{6} \right) $$
$$ \sin \left( \frac{3\pi}{4} \right) = \sin \left( \frac{\pi}{4} \right) $$
$$ 0.71 = 0.71 $$
Which is also satisfied.
Verification for k=1
$$ x = -\pi + 6(1) \pi \ or \ x = \frac{\pi}{2} + 3(1) \pi $$
$$ x = 5\pi \ or \ x = \frac{\pi}{2} + 3\pi $$
$$ x = 5\pi \ or \ x = \frac{7\pi}{2} $$
Substitute the first solution x = 5π into the equation:
$$ \sin \left( \frac{1}{2}x + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6}x + \frac{\pi}{6} \right) $$
$$ \sin (3\pi) = \sin (\pi) $$
This holds true as sin(3π) = 0 and sin(π) = 0.
Substitute the second solution x = 7π/2 into the equation:
$$ \sin ( \frac{1}{2}x + \frac{\pi}{2} ) = \sin ( \frac{1}{6}x + \frac{\pi}{6} ) $$
$$ \sin ( \frac{1}{2} \cdot \frac{7 \pi}{2} + \frac{\pi}{2} ) = \sin ( \frac{1}{6} \cdot \frac{7 \pi}{2} + \frac{\pi}{6} ) $$
$$ \sin ( \frac{7 \pi}{4} + \frac{\pi}{2} ) = \sin ( \frac{7 \pi}{12} + \frac{\pi}{6} ) $$
$$ \sin ( \frac{7 \pi + 2 \pi}{4} ) = \sin ( \frac{7 \pi + 2 \pi }{12} ) $$
$$ \sin ( \frac{9 \pi}{4} ) = \sin ( \frac{9 \pi }{12} ) $$
$$ \sin ( \frac{9 \pi}{4} ) = \sin ( \frac{3 \pi }{4} ) $$
$$ 0,71 = 0,71 $$
Which is also confirmed.
The Proof
Let's consider two angles, α1 and α2, that yield the same sine value:
$$ \sin \alpha_1 = \sin \alpha_2 = c $$
Two angles share the same sine value in exactly two cases:
- if the angles are congruent (α1 = α2)
- if the angles are supplementary (α1 + α2 = π)
Graphically:
Thus, the conditions for achieving the same sine value are:
$$ \alpha_1 = \alpha_2 $$ $$ \alpha_1 + \alpha_2 = \pi $$
Sine is a periodic function with a period of 2π.
So, we also consider multiples k of a full rotation, 2π, as possible solutions:
$$ \alpha_1 = \alpha_2 + 2k \pi $$ $$ \alpha_1 + \alpha_2 = \pi + 2k \pi $$
This completes the solution set for equations where sin α1 = sin α2.
$$ \alpha_1 = \alpha_2 + 2k \pi \ or \ \alpha_1 + \alpha_2 = \pi + 2k \pi $$
And so on.