Solving the Equation sin x = sin y

The trigonometric equation sin α = sin α' is satisfied when the angles are either congruent, α = α', or supplementary, meaning α + α' = π. $$ α = α' + 2k \pi $$ or $$ α + α' = \pi + 2k \pi $$

Since sine is a periodic function with a period of 2π, this trigonometric equation has infinitely many solutions, taking into account integer multiples of a full rotation (2π).

Here, k represents any integer, positive or negative.

An Example Solution

Let's solve the following equation:

$$ \sin \left( \frac{1}{2}x + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6}x + \frac{\pi}{6} \right) $$

The angles in the two sine functions are:

$$ \alpha = \frac{1}{2}x + \frac{\pi}{2} $$

$$ \alpha' = \frac{1}{6}x + \frac{\pi}{6} $$

Using the formula for the equation sin x = sin y:

$$ α = α' + 2k \pi \ or \ α + α' = \pi + 2k \pi $$

Substituting α and α':

$$ \frac{1}{2}x + \frac{\pi}{2} = \frac{1}{6}x + \frac{\pi}{6} + 2k \pi \ or \ \frac{1}{2}x + \frac{\pi}{2} + \frac{1}{6}x + \frac{\pi}{6} = \pi + 2k \pi $$

We solve for x:

$$ \frac{1}{2}x - \frac{1}{6}x = \frac{\pi}{6} - \frac{\pi}{2} + 2k \pi \ or \ \frac{3+1}{6}x + \frac{3\pi + \pi}{6} = \pi + 2k \pi $$

$$ \frac{3 - 1}{6}x = \frac{\pi - 3\pi}{6} + 2k \pi \ or \ \frac{4}{6}x + \frac{4\pi}{6} = \pi + 2k \pi $$

$$ \frac{2}{6}x = \frac{-2\pi}{6} + 2k \pi \ or \ \frac{2}{3}x + \frac{2\pi}{3} = \pi + 2k \pi $$

$$ \frac{1}{3}x = \frac{-\pi}{3} + 2k \pi \ or \ \frac{2}{3}x = \pi - \frac{2\pi}{3} + 2k \pi $$

$$ x = 3 \left( \frac{-\pi}{3} + 2k \pi \right) \ or \ \frac{2}{3}x = \frac{3\pi - 2\pi}{3} + 2k \pi $$

$$ x = -\pi + 6k \pi \ or \ \frac{2}{3} x = \frac{\pi}{3} + 2k \pi $$

$$ x = -\pi + 6k \pi \ or \ x = \frac{3}{2} \left( \frac{\pi}{3} + 2k \pi \right) $$

$$ x = -\pi + 6k \pi \ or \ x = \frac{3}{2} \cdot \frac{\pi}{3} + \frac{3}{2} \cdot 2k \pi $$

$$ x = -\pi + 6k \pi \ or \ x = \frac{\pi}{2} + 3k \pi $$

These are all the solutions for the equation sin x = sin y

$$ x = -\pi + 6k \pi \ or \ x = \frac{\pi}{2} + 3k \pi $$

Now we can verify if these solutions satisfy the trigonometric equation.

Verification for k=0

$$ x = -\pi + 6(0) \pi \ or \ x = \frac{\pi}{2} + 3(0) \pi $$

$$ x = -\pi \ or \ x = \frac{\pi}{2} $$

Substitute the first solution x = -π into the equation:

$$ \sin \left( \frac{1}{2}x + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6}x + \frac{\pi}{6} \right) $$

$$ \sin \left( \frac{1}{2} (-\pi) + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6} (-\pi) + \frac{\pi}{6} \right) $$

$$ \sin (0) = \sin (0) $$

$$ 0 = 0 $$

Which is indeed satisfied.

the trigonometric equation is satisfied

Substitute the second solution x = π/2 into the equation:

$$ \sin \left( \frac{1}{2}x + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6}x + \frac{\pi}{6} \right) $$

$$ \sin \left( \frac{1}{2} \cdot \frac{\pi}{2} + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6} \cdot \frac{\pi}{2} + \frac{\pi}{6} \right) $$

$$ \sin \left( \frac{3\pi}{4} \right) = \sin \left( \frac{\pi}{4} \right) $$

$$ 0.71 = 0.71 $$

Which is also satisfied.

the equation is satisfied

Verification for k=1

$$ x = -\pi + 6(1) \pi \ or \ x = \frac{\pi}{2} + 3(1) \pi $$

$$ x = 5\pi \ or \ x = \frac{\pi}{2} + 3\pi $$

$$ x = 5\pi \ or \ x = \frac{7\pi}{2} $$

Substitute the first solution x = 5π into the equation:

$$ \sin \left( \frac{1}{2}x + \frac{\pi}{2} \right) = \sin \left( \frac{1}{6}x + \frac{\pi}{6} \right) $$

$$ \sin (3\pi) = \sin (\pi) $$

This holds true as sin(3π) = 0 and sin(π) = 0.

the equation is satisfied

Substitute the second solution x = 7π/2 into the equation:

$$ \sin ( \frac{1}{2}x + \frac{\pi}{2} ) = \sin ( \frac{1}{6}x + \frac{\pi}{6} ) $$

$$ \sin ( \frac{1}{2} \cdot \frac{7 \pi}{2} + \frac{\pi}{2} ) = \sin ( \frac{1}{6} \cdot \frac{7 \pi}{2} + \frac{\pi}{6} ) $$

$$ \sin ( \frac{7 \pi}{4} + \frac{\pi}{2} ) = \sin ( \frac{7 \pi}{12} + \frac{\pi}{6} ) $$

$$ \sin ( \frac{7 \pi + 2 \pi}{4} ) = \sin ( \frac{7 \pi + 2 \pi }{12} ) $$

$$ \sin ( \frac{9 \pi}{4} ) = \sin ( \frac{9 \pi }{12} ) $$

$$ \sin ( \frac{9 \pi}{4} ) = \sin ( \frac{3 \pi }{4} ) $$

$$ 0,71 = 0,71 $$

Which is also confirmed.

the trigonometric equation is satisfied

The Proof

Let's consider two angles, α1 and α2, that yield the same sine value:

$$ \sin \alpha_1 = \sin \alpha_2 = c $$

Two angles share the same sine value in exactly two cases:

  1. if the angles are congruent (α1 = α2)
  2. if the angles are supplementary (α1 + α2 = π)

Graphically:

case where c < 1 and c > -1

Thus, the conditions for achieving the same sine value are:

$$ \alpha_1 = \alpha_2 $$ $$ \alpha_1 + \alpha_2 = \pi $$

Sine is a periodic function with a period of 2π.

So, we also consider multiples k of a full rotation, 2π, as possible solutions:

$$ \alpha_1 = \alpha_2 + 2k \pi $$ $$ \alpha_1 + \alpha_2 = \pi + 2k \pi $$

This completes the solution set for equations where sin α1 = sin α2.

$$ \alpha_1 = \alpha_2 + 2k \pi \ or \ \alpha_1 + \alpha_2 = \pi + 2k \pi $$

And so on.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous