Tangent subtraction formula

The formula for subtracting tangents is as follows: $$ \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} $$

This formula is valid as long as the difference a-b does not equal ±90° + k·180°, where k is an integer.

$$ \alpha - \beta \ne \frac{\pi}{2}+ k \cdot \pi \ \ \ \ \ k \in Z $$

This is because the tangent is undefined at these points.

A practical example

Let’s consider the tangents of two angles, a = 60° and b = 30°.

$$ \tan a = \tan 60° = \sqrt{3} $$

$$ \tan b = \tan 30° = \frac{\sqrt{3}}{3} $$

The tangent of the difference a-b is the tangent of 30°.

$$ \tan (a-b) = \tan(60°-30°) = \tan(30°) = \frac{\sqrt{3}}{3} $$

Note: The tangent of the difference between two angles a-b is not simply the difference between their tangents. $$ \tan(60°-30°) = \tan(30°) = \frac{\sqrt{3}}{3} \ne \tan(60°) - \tan(30°) = \sqrt{3} - \frac{\sqrt{3}}{3} = \frac{3\sqrt{3} - \sqrt{3}}{3} = \frac{2\sqrt{3}}{3} $$

To subtract these two angles, we use the tangent subtraction formula.

$$ \tan (a-b) = \frac{ \tan a - \tan b }{1+\tan a \tan b} $$

Where a = 60° and b = 30°.

$$ \tan (60°-30°) = \frac{ \tan 60° - \tan 30° }{1+\tan 60° \tan 30°} $$

$$ \tan (60°-30°) = \frac{ \sqrt{3} - \frac{\sqrt{3}}{3} }{1+\sqrt{3} \cdot \frac{\sqrt{3}}{3} } $$

$$ \tan (60°-30°) = \frac{ \frac{3\sqrt{3} - \sqrt{3}}{3} }{1+ \frac{3}{3} } $$

$$ \tan (60°-30°) = \frac{ \frac{2\sqrt{3}}{3} }{2} $$

$$ \tan (60°-30°) = \frac{2\sqrt{3}}{3} \cdot \frac{1}{2} $$

$$ \tan (60°-30°) = \frac{\sqrt{3}}{3} $$

The result is correct:

$$ \tan (60°-30°) = \tan(30°) = \frac{\sqrt{3}}{3} $$

The proof

To prove the formula:

$$ \tan(\alpha - \beta) $$

we rewrite the subtraction as an addition:

$$ \tan(\alpha - \beta) = \tan[\alpha + (- \beta)] $$

Next, we apply the tangent addition formula:

$$ \tan(\alpha - \beta) = \tan[\alpha + (- \beta)] = \frac{ \tan \alpha + \tan(- \beta) }{ 1 - \tan \alpha \tan(- \beta) } $$

Since the tangent is an odd function, tan(-β) = -tan(β).

$$ \tan(\alpha - \beta) = \frac{ \tan \alpha - \tan \beta }{ 1 - \tan \alpha [ - \tan(\beta) ] } $$

$$ \tan(\alpha - \beta) = \frac{ \tan \alpha - \tan \beta }{ 1 + \tan \alpha \tan \beta } $$

This completes the proof of the initial formula.

And that’s how it’s done.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous