Trigonometric Equations of the Form sin(α) = cos(α')

The trigonometric equation $$ \sin \alpha = \cos \alpha' $$ can be solved using the formula $$ \sin \alpha = \sin (\frac{\pi}{2} - \alpha') $$. The solutions are given by $$ \alpha = (\frac{\pi}{2} - \alpha') + 2k \pi \ \text{or} \ \alpha + (\frac{\pi}{2} - \alpha') = \pi + 2k \pi $$

Example

Let’s solve the trigonometric equation:

$$ \sin(\frac{1}{2}x) = \cos(\frac{1}{4}x) $$

We rewrite the cosine function, cos(1/4x), as a sine function: sin(π/2 - 1/4x).

$$ \sin(\frac{1}{2}x) = \sin(\frac{\pi}{2} - \frac{1}{4}x) $$

This transforms the equation into one of the form sin α = sin α', where:

$$ \alpha = \frac{1}{2}x $$

$$ \alpha' = \frac{\pi}{2} - \frac{1}{4}x $$

We then apply the formula for solving an equation of the form sin α = sin α':

$$ \alpha = \alpha' + 2k \pi \ \text{or} \ \alpha + \alpha' = \pi + 2k \pi $$

Here, k is any integer.

Substituting the values of α and α':

$$ \frac{1}{2}x = (\frac{\pi}{2} - \frac{1}{4}x) + 2k \pi \ \text{or} \ \frac{1}{2}x + (\frac{\pi}{2} - \frac{1}{4}x) = \pi + 2k \pi $$

Now, we simplify and isolate x:

$$ \frac{1}{2}x + \frac{1}{4}x = \frac{\pi}{2} + 2k \pi \ \text{or} \ \frac{1}{2}x - \frac{1}{4}x = \pi + 2k \pi - \frac{\pi}{2} $$

$$ \frac{3}{4}x = \frac{\pi}{2} + 2k \pi \ \text{or} \ \frac{1}{4}x = \frac{\pi}{2} + 2k \pi $$

$$ x = \frac{4}{3} \cdot (\frac{\pi}{2} + 2k \pi) \ \text{or} \ x = 4 \cdot (\frac{\pi}{2} + 2k \pi) $$

$$ x = \frac{2 \pi}{3} + \frac{8k \pi}{3} \ \text{or} \ x = 2 \pi + 8k \pi $$

In this way, we obtain all the solutions to the equation sin x = sin y.

Next, we verify whether these solutions satisfy the original trigonometric equation.

Verification for k = 0

$$ x = \frac{2 \pi}{3} + \frac{8k \pi}{3} \ \text{or} \ x = 2 \pi + 8k \pi $$

$$ x = \frac{2 \pi}{3} + \frac{8(0) \pi}{3} \ \text{or} \ x = 2 \pi + 8(0) \pi $$

$$ x = \frac{2 \pi}{3} \ \text{or} \ x = 2 \pi $$

Thus, one solution to the equation is x = 2π/3, and another is x = 2π.

the two solutions for k=0

By varying k (e.g., k = 1, k = -1, k = 2, etc.), we can find all the other infinite solutions of the equation.

 

Proof

The cosine function:

$$ \cos \alpha $$

can be rewritten in terms of the sine function using an associated angle:

$$ \cos \alpha = \sin (\frac{\pi}{2} - \alpha) $$

Sine and cosine are offset by 90° (π/2).

cosine of alpha equals sine of pi/2 minus alpha

By subtracting the angle α from 90° (π/2), we can express the cosine function cos(α) as the sine function sin(π/2 - α).

Thus, the trigonometric equation:

$$ \sin \alpha = \cos \alpha' $$

can be rewritten as:

$$ \sin \alpha = \sin (\frac{\pi}{2} - \alpha') $$

This transforms the equation into an identity between two sine functions sin(α) = sin(β), with solutions:

$$ \alpha = \beta + 2k \pi \ \text{or} \ \alpha + \beta = \pi + 2k \pi $$

Here, β = π/2 - α'.

$$ \alpha = (\frac{\pi}{2} - \alpha') + 2k \pi \ \text{or} \ \alpha + (\frac{\pi}{2} - \alpha') = \pi + 2k \pi $$

This proves the formula for solving trigonometric equations of the form sin(α) = cos(α').

And so on.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Trigonometry

Trigonometric Laws and Formulas

Hyperbolic Functions

Miscellaneous