Derivative of the Cosine Function

Definition

The derivative of the cosine function is: $$ D[\cos x] = -\sin x $$

Proof

Let’s derive this result by evaluating the difference quotient for the cosine function:

$$ \lim_{h \rightarrow 0} \frac{\cos(x+h) - \cos(x)}{h} $$

We start by using the following trigonometric identity:

$$ \cos a - \cos b = -2 \sin \left(\frac{a - b}{2}\right) \cdot \sin \left(\frac{a + b}{2}\right) $$

Applying this identity to the numerator, we set:

$$ a = x + h $$

$$ b = x $$

This transforms the difference quotient into:

$$ \lim_{h \rightarrow 0} \frac{-2 \cdot \sin \left(\frac{h}{2}\right) \cdot \sin \left(x + \frac{h}{2}\right)}{h} $$

Multiplying the numerator and denominator by \( \frac{1}{2} \) allows us to simplify the expression further:

$$ \lim_{h \rightarrow 0} \frac{-\sin \left(\frac{h}{2}\right) \cdot \sin \left(x + \frac{h}{2}\right)}{\frac{h}{2}} $$

We can separate this limit into two parts:

$$ \lim_{h \rightarrow 0} \frac{-\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} \cdot \lim_{h \rightarrow 0} \sin \left(x + \frac{h}{2}\right) $$

Let’s evaluate these limits individually.

The first limit is a well-known standard limit in calculus:

$$ \lim_{t \rightarrow 0} \frac{\sin t}{t} = 1 $$

Substituting \( t = \frac{h}{2} \), we find:

$$ \lim_{h \rightarrow 0} \frac{-\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} = -1 $$

The second limit is straightforward:

$$ \lim_{h \rightarrow 0} \sin \left(x + \frac{h}{2}\right) = \sin x $$

Combining these results, we get:

$$ \lim_{h \rightarrow 0} \frac{-\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} \cdot \lim_{h \rightarrow 0} \sin \left(x + \frac{h}{2}\right) = -1 \cdot \sin x $$

Therefore, the derivative of \(\cos x\) is:

$$ f'(x) = -\sin x $$

We have thus proven that the derivative of the cosine function is indeed \(-\sin x\).

Graphical Representation
graphical representation of the cosine function and its derivative

A Practical Example

Let’s examine the following function:

$$ f(x) = \cos (x^2) $$

Note: When the argument of the cosine function is not simply \( x \), we’re dealing with a composite function of the form \( f(g(x)) \). Therefore, the derivative is not simply \(-\sin(x^2)\); we need to apply the chain rule.

Since this is a composite function, we apply the chain rule:

$$ f'(x) = f'(g(x)) \cdot g'(x) $$

In this case:

$$ f'(g(x)) = D[\cos(g(x))] = -\sin(x^2) $$

$$ g'(x) = D[x^2] = 2x $$

Substituting these into the chain rule gives:

$$ f'(x) = -\sin(x^2) \cdot 2x $$

Hence, the derivative of \(\cos(x^2)\) is:

$$ f'(x) = -2x \cdot \sin(x^2) $$

Graphical Representation
graph of the cosine function and its first derivative

And so on.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Derivatives

Theorems

Various Derivatives

Exercises