Derivative of the Cosine Function
Definition
The derivative of the cosine function is: $$ D[\cos x] = -\sin x $$
Proof
Let’s derive this result by evaluating the difference quotient for the cosine function:
$$ \lim_{h \rightarrow 0} \frac{\cos(x+h) - \cos(x)}{h} $$
We start by using the following trigonometric identity:
$$ \cos a - \cos b = -2 \sin \left(\frac{a - b}{2}\right) \cdot \sin \left(\frac{a + b}{2}\right) $$
Applying this identity to the numerator, we set:
$$ a = x + h $$
$$ b = x $$
This transforms the difference quotient into:
$$ \lim_{h \rightarrow 0} \frac{-2 \cdot \sin \left(\frac{h}{2}\right) \cdot \sin \left(x + \frac{h}{2}\right)}{h} $$
Multiplying the numerator and denominator by \( \frac{1}{2} \) allows us to simplify the expression further:
$$ \lim_{h \rightarrow 0} \frac{-\sin \left(\frac{h}{2}\right) \cdot \sin \left(x + \frac{h}{2}\right)}{\frac{h}{2}} $$
We can separate this limit into two parts:
$$ \lim_{h \rightarrow 0} \frac{-\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} \cdot \lim_{h \rightarrow 0} \sin \left(x + \frac{h}{2}\right) $$
Let’s evaluate these limits individually.
The first limit is a well-known standard limit in calculus:
$$ \lim_{t \rightarrow 0} \frac{\sin t}{t} = 1 $$
Substituting \( t = \frac{h}{2} \), we find:
$$ \lim_{h \rightarrow 0} \frac{-\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} = -1 $$
The second limit is straightforward:
$$ \lim_{h \rightarrow 0} \sin \left(x + \frac{h}{2}\right) = \sin x $$
Combining these results, we get:
$$ \lim_{h \rightarrow 0} \frac{-\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} \cdot \lim_{h \rightarrow 0} \sin \left(x + \frac{h}{2}\right) = -1 \cdot \sin x $$
Therefore, the derivative of \(\cos x\) is:
$$ f'(x) = -\sin x $$
We have thus proven that the derivative of the cosine function is indeed \(-\sin x\).
Graphical Representation

A Practical Example
Let’s examine the following function:
$$ f(x) = \cos (x^2) $$
Note: When the argument of the cosine function is not simply \( x \), we’re dealing with a composite function of the form \( f(g(x)) \). Therefore, the derivative is not simply \(-\sin(x^2)\); we need to apply the chain rule.
Since this is a composite function, we apply the chain rule:
$$ f'(x) = f'(g(x)) \cdot g'(x) $$
In this case:
$$ f'(g(x)) = D[\cos(g(x))] = -\sin(x^2) $$
$$ g'(x) = D[x^2] = 2x $$
Substituting these into the chain rule gives:
$$ f'(x) = -\sin(x^2) \cdot 2x $$
Hence, the derivative of \(\cos(x^2)\) is:
$$ f'(x) = -2x \cdot \sin(x^2) $$
Graphical Representation

And so on.
