Derivative of the Square Root

The derivative of a square root is given by $$ D[\sqrt{x}] = \frac{1}{2 \cdot \sqrt{x}} $$

The Proof

Let’s prove this basic differentiation rule by considering the function:

$$ f(x) = \sqrt{x} $$

We look at the difference quotient:

$$ \lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} $$

where

$$ f(x)=\sqrt{x} $$

and

$$ f(x+h)=\sqrt{x+h} $$

Plugging these into the difference quotient gives us:

$$ \lim_{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} $$

To simplify the difference quotient, we multiply the numerator and denominator by the conjugate:

$$ \lim_{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} $$

Expanding the numerator, we get:

$$ \lim_{h \rightarrow 0} \frac{\sqrt{x+h}\cdot (\sqrt{x+h}+\sqrt{x} ) -\sqrt{x} \cdot (\sqrt{x+h}+\sqrt{x})}{h \cdot \sqrt{x+h}+\sqrt{x} } $$

$$ \lim_{h \rightarrow 0} \frac{ \sqrt{x+h} \cdot \sqrt{x+h} + \sqrt{x+h} \cdot \sqrt{x} -\sqrt{x} \cdot \sqrt{x+h} - \sqrt{x} \sqrt{x})}{h \cdot \sqrt{x+h}+\sqrt{x} } $$

$$ \lim_{h \rightarrow 0} \frac{(x+h) + \sqrt{x^2+hx} - \sqrt{x^2+hx} -x}{h \cdot \sqrt{x+h}+\sqrt{x} } $$

$$ \lim_{h \rightarrow 0} \frac{h}{h \cdot \sqrt{x+h}+\sqrt{x} } $$

$$ \lim_{h \rightarrow 0} \frac{1}{ \sqrt{x+h}+\sqrt{x} } $$

Taking the limit as \( h \to 0 \), we find:

$$ \lim_{h \rightarrow 0} \frac{1}{ \sqrt{x+h}+\sqrt{x} } = \frac{1}{ \sqrt{x}+\sqrt{x} } = \frac{1}{ 2\sqrt{x} } $$

So, we’ve established the derivative of the square root of \( x \).

Graphical Representation
Graph illustrating the derivative of the square root function

A Worked Example

Let’s calculate the derivative of the following function:

$$ f(x) = \sqrt{3x+1} $$

Note. When differentiating a square root, it’s crucial to be cautious: in many cases, it’s not just a matter of applying the basic derivative of a square root directly. For instance, here the derivative is NOT $$ \frac{1}{2 \sqrt{3x+1}} \:\:\: incorrect $$ $$ \frac{1}{2 \sqrt{3}} \:\:\: incorrect $$

In this case, we’re dealing with a composite function \( g[h(x)] \), where:

$$ g(x) = \sqrt{h(x)} $$

$$ h(x) = 3x+1 $$

This means we have to apply the chain rule.

The chain rule states:

$$ g'[h(x)] \cdot h'(x) $$

where

$$ g'[h(x)] = D[ \sqrt{h(x)} ] = \frac{1}{2\sqrt{h(x)}} = \frac{1}{2\sqrt{3x+1}} $$

and

$$ h'(x) = D[3x+1] = 3 $$

Putting it all together, we get:

$$ g'[h(x)] \cdot h'(x) = \frac{1}{2\sqrt{3x+1}} \cdot 3 = \frac{3}{2\sqrt{3x+1}} $$

Thus, the derivative of \( f(x) \) is:

$$ f'(x) = \frac{3}{2\sqrt{3x+1}} $$

And that’s the result.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Derivatives

Theorems

Various Derivatives

Exercises