Derivative of the Sine Function
The derivative of the sine function is the cosine function. $$ D[\sin x] = \cos x $$
Proof
To prove this fundamental rule of differentiation, we start with the sine function:
$$ f(x) = \sin x $$
We then consider the limit definition of the derivative:
$$ \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} $$
where:
$$ f(x) = \sin x $$
$$ f(x+h) = \sin (x + h) $$
Substituting these into the difference quotient, we get:
$$ \lim_{h \rightarrow 0} \frac{\sin (x + h) - \sin (x)}{h} $$
Using the trigonometric identity: $$ \sin a - \sin b = 2 \cdot \sin \left(\frac{a - b}{2}\right) \cdot \cos \left(\frac{a + b}{2}\right) $$
we can rewrite the numerator as:
$$ \lim_{h \rightarrow 0} \frac{2 \cdot \sin \left(\frac{h}{2}\right) \cdot \cos \left(x + \frac{h}{2}\right)}{h} $$
Rewriting the expression gives:
$$ \lim_{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right) \cdot \cos \left(x + \frac{h}{2}\right)}{\frac{h}{2}} $$
This allows us to split the limit into two parts:
$$ \lim_{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} \cdot \lim_{h \rightarrow 0} \cos \left(x + \frac{h}{2}\right) $$
The first limit is a standard result:
$$ \lim_{t \rightarrow 0} \frac{\sin t}{t} = 1 $$
Therefore, the expression simplifies to:
$$ 1 \cdot \lim_{h \rightarrow 0} \cos \left(x + \frac{h}{2}\right) $$
As \( h \) approaches zero, this limit evaluates to \(\cos x\):
$$ 1 \cdot \cos x $$
Thus, the derivative of \(\sin(x)\) is:
$$ f'(x) = \cos x $$
We have therefore established that the derivative of the sine function is the cosine function.
Graphical Representation

A Practical Example
Consider the following example:
$$ f(x) = \sin (x^2) $$
Note: When the argument of the sine function is something other than simply \( x \), we cannot directly apply the elementary derivative rule. Instead, we are dealing with a composite function of the form \( f(g(x)) \). Therefore, the derivative of this function is not simply \(\cos(x^2)\).
This is a classic case of a composite function, so we must apply the chain rule:
$$ f'(x) = f'(g(x)) \cdot g'(x) $$
In this case:
$$ f'(g(x)) = D[\sin(g(x))] = \cos(x^2) $$
$$ g'(x) = D[x^2] = 2x $$
Substituting these into the chain rule gives:
$$ f'(x) = \cos(x^2) \cdot 2x $$
Thus, the derivative of \(\sin(x^2)\) is:
$$ f'(x) = 2x \cdot \cos(x^2) $$
Graphical Representation

And so on.
