Eigenvalues of a Matrix

Eigenvalues (or characteristic values) of a square matrix \( A \) are scalar values \( \lambda \) that satisfy the equation $$ A \mathbf{v} = \lambda \mathbf{v} $$ where \( \mathbf{v} \) is a non-zero vector called an eigenvector (or characteristic vector).

This equation indicates that multiplying the matrix \( A \) by the vector \( \mathbf{v} \) does not change the direction of the vector but only scales its magnitude (or reverses its sign) by the factor \( \lambda \).

To determine the eigenvalues, the characteristic polynomial of the matrix is solved:

$$ \det(A - \lambda I) = 0 $$

Here, \( I \) represents the identity matrix with the same dimensions as \( A \).

The solutions \( \lambda \) to this equation are the eigenvalues of the matrix \( A \).

Why are eigenvalues important? Eigenvalues are used in a wide range of applications, such as matrix diagonalization, analyzing linear systems, and more.

    A Practical Example

    Let’s consider the square matrix \( A \):

    $$ A = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} $$

    To find the eigenvalues, we calculate the characteristic polynomial of \( A \):

    $$ \det(A - \lambda I) = 0 $$

    Where \( I \) is the identity matrix of the same size as \( A \).

    $$ A - \lambda I = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{pmatrix} $$

    The determinant of this matrix is:

    $$ \det(A - \lambda I) = (4 - \lambda)(3 - \lambda) - (2 \cdot 1) $$

    $$ \det(A - \lambda I) = (4 - \lambda)(3 - \lambda) - 2 $$

    Expanding this expression gives:

    $$ \det(A - \lambda I) = 12 - 4\lambda - 3\lambda + \lambda^2 - 2 $$

    $$ \det(A - \lambda I) = \lambda^2 - 7\lambda + 10 $$

    We then solve the quadratic equation \( \lambda^2 - 7\lambda + 10 = 0 \):

    $$ \lambda = \frac{-b \pm \sqrt{b^2-4ac}}{2a} $$

    Where \( a = 1 \), \( b = -7 \), and \( c = 10 \).

    $$ \lambda = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot 10}}{2 \cdot 1} $$

    $$ \lambda = \frac{7 \pm \sqrt{49 - 40}}{2} $$

    $$ \lambda = \frac{7 \pm \sqrt{9}}{2} $$

    $$ \lambda = \frac{7 \pm 3}{2} $$

    $$ \lambda = \begin{cases} \frac{7 - 3}{2} = \frac{4}{2} = 2 \\ \\ \frac{7 + 3}{2} = \frac{10}{2} = 5 \end{cases} $$

    Thus, the eigenvalues of the matrix are:

    $$ \lambda_1 = 5, \quad \lambda_2 = 2 $$

    With the eigenvalues determined, we can calculate the corresponding eigenvectors.

    How to Find Eigenvectors?For each eigenvalue, we solve \( (A - \lambda I)\mathbf{v} = 0 \) to find the eigenvectors.

    • For \( \lambda_1 = 5 \), the matrix \( A - 5I \) is: $$ A - 5I = \begin{pmatrix} 4 - 5 & 2 \\ 1 & 3 - 5 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix} $$ Solving the equation \( (A - 5I)\mathbf{v} = 0 \): $$ \begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. $$ This yields the system: $$ \begin{cases} -x + 2y = 0 \\ \\ x - 2y = 0 \end{cases} $$$$ \begin{cases} -x + 2y = 0 \\ \\ x = 2y \end{cases} $$ Substituting \( x = 2y \): $$ \begin{cases} -(2y) + 2y = 0 \\ \\ x = 2y \end{cases} $$$$ \begin{cases} 0 = 0 \\ \\ x = 2y \end{cases} $$ Since the first equation is always true, the solutions are all vectors satisfying \( x = 2y \). Thus, the eigenvector corresponding to \( \lambda_1 = 5 \) is of the form \( \mathbf{v}_1 = \begin{pmatrix} 2y \\ y \end{pmatrix} \). For example, \( \mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \).
    • For \( \lambda_2 = 2 \), the matrix \( A - 2I \) is: $$ A - 2I = \begin{pmatrix} 4 - 2 & 2 \\ 1 & 3 - 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} $$ Solving \( (A - 2I)\mathbf{v} = 0 \): $$ \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. $$ This leads to the system: $$ \begin{cases} 2x + 2y = 0 \\ \\ x + y = 0 \end{cases} $$$$ \begin{cases} 2x + 2y = 0 \\ \\ x = -y \end{cases} $$ Substituting \( x = -y \): $$ \begin{cases} 2(-y) + 2y = 0 \\ \\ x = -y \end{cases} $$$$ \begin{cases} 0 = 0 \\ \\ x = -y \end{cases} $$ The solutions are all vectors satisfying \( x = -y \). Thus, the eigenvector corresponding to \( \lambda_2 = 2 \) is of the form \( \mathbf{v}_2 = \begin{pmatrix} x \\ -x \end{pmatrix} \). For example, \( \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \).

    To summarize, the eigenvalues and their corresponding eigenvectors are:

    • $ \lambda_1 = 5, \quad \mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} $
    • $ \lambda_2 = 2, \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} $

    Example 2

    In this example, we calculate eigenvalues in a system of equations.

    Consider the system:

    $$ \begin{cases} 3x + 2y &= 6, \\ 4x + y &= 5 \end{cases} $$

    Linear systems can be expressed in matrix form as:

    $$ A \mathbf{x} = \mathbf{b} $$

    Here, \( A \) is the coefficient matrix, \( \mathbf{x} \) is the unknown vector, and \( \mathbf{b} \) is the vector of known terms.

    The coefficient matrix is:

    $$ A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} $$

    Eigenvalues of \( A \) are found by solving the characteristic polynomial:

    $$ \det(A - \lambda I) = 0 $$

    Construct the matrix \( A - \lambda I \):

    $$ A - \lambda I = \begin{bmatrix} 3 - \lambda & 2 \\ 4 & 1 - \lambda \end{bmatrix} $$

    Then calculate its determinant:

    $$ \det(A - \lambda I) = (3 - \lambda)(1 - \lambda) - (4 \cdot 2) $$

    $$ \det(A - \lambda I) = (3 - \lambda)(1 - \lambda) - 8 $$

    $$ \det(A - \lambda I) = 3 - 3\lambda - \lambda + \lambda^2 - 8 $$

    $$ \det(A - \lambda I) = \lambda^2 - 4\lambda - 5 $$

    The characteristic polynomial is:

    $$ \lambda^2 - 4\lambda - 5 = 0 $$

    Solving for the eigenvalues:

    $$ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$

    Where \( a = 1 \), \( b = -4 \), and \( c = -5 \).

    $$ \lambda = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-5)}}{2 \cdot 1} $$

    $$ \lambda = \frac{4 \pm \sqrt{16 + 20}}{2} $$

    $$ \lambda = \frac{4 \pm \sqrt{36}}{2} $$

    $$ \lambda = \frac{4 \pm 6}{2} $$

    $$ \lambda = \begin{cases} \frac{4 - 6}{2} = \frac{-2}{2} = -1 \\ \\ \frac{4 + 6}{2} = \frac{10}{2} = 5 \end{cases} $$

    Therefore, the eigenvalues are \( \lambda_1 = 5 \) and \( \lambda_2 = -1 \).

    And so on.

     

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Matrices (linear algebra)