Eigenvectors

A non-zero vector \( \mathbf{v} \) is called an eigenvector of a square matrix \( A \) if there exists a scalar \( \lambda \in \mathbb{R} \) (or \( \mathbb{C} \)) such that: $$ A \mathbf{v} = \lambda \mathbf{v} $$ Here, \( \lambda \) is known as the eigenvalue corresponding to the eigenvector \( \mathbf{v} \).

This equation indicates that the effect of \( A \) on \( \mathbf{v} \) is equivalent to scaling the vector by \( \lambda \).

In simpler terms, the vector’s direction remains unchanged after the transformation; it can only be stretched, compressed, or flipped.

How to Find Eigenvectors

To determine the eigenvectors of a square matrix \( A \) of order \( n \), solve the following equation:

$$ (A - \lambda I) \mathbf{v} = 0 $$

Where \( I \) is the \( n \times n \) identity matrix.

The solutions to this equation provide the eigenvalues \( \lambda \), which can be obtained by solving the characteristic polynomial:

$$ \det(A - \lambda I) = 0 $$

For each eigenvalue \( \lambda \), compute the null space of \( A - \lambda I \), represented as:

$$ \ker(A - \lambda I) $$

This null space provides a basis for the eigenvectors corresponding to \( \lambda \).

A Practical Example

Let’s consider the matrix:

$$ A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} $$

The characteristic equation is:

$$ \det(A - \lambda I) = \det \begin{bmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{bmatrix} = (2-\lambda)^2 - 1 = 0 $$

The eigenvalues are \( \lambda_1 = 3 \) and \( \lambda_2 = 1 \).

Next, calculate the eigenvectors for each eigenvalue.

1] For \( \lambda_1 = 3 \)

Substitute \( \lambda = 3 \) into the matrix:

$$ (A - \lambda I) \mathbf{v} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$

$$ (A - \lambda I) \mathbf{v} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} - 3 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$

$$ (A - \lambda I) \mathbf{v} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} $$

$$ (A - \lambda I) \mathbf{v} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} $$

Now solve the equation:

$$ (A - \lambda I) \mathbf{v} = 0 $$

$$ \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 $$

The resulting system of equations is:

$$ \begin{cases} -x + y = 0 \\ x - y = 0 \end{cases} $$

Solving gives \( x = y \):

$$ \mathbf{v}_1 = \begin{bmatrix} x \\ x \end{bmatrix} $$

For example, an eigenvector corresponding to \( \lambda_1 = 3 \) is:

$$ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$

2] For \( \lambda_2 = 1 \)

Substitute \( \lambda = 1 \) into the matrix:

$$ (A - \lambda I) \mathbf{v} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$

$$ (A - \lambda I) \mathbf{v} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} $$

Solve the equation:

$$ (A - \lambda I) \mathbf{v} = 0 $$

$$ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 $$

The corresponding system of equations simplifies to:

$$ \begin{cases} x + y = 0 \\ x + y = 0 \end{cases} $$

Thus, \( x = -y \):

$$ \mathbf{v}_2 = \begin{bmatrix} x \\ -x \end{bmatrix} $$

For example, an eigenvector corresponding to \( \lambda_2 = 1 \) is:

$$ \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} $$

3] Conclusion

To summarize, the eigenvectors of the matrix are:

  • $$ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$
  • $$ \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} $$

And so on.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Matrices (linear algebra)