Zero matrix

A matrix is called a zero matrix if all its elements are zero. It is commonly represented as $$ 0_{mxn} = \begin{pmatrix} 0 & 0 & ... & 0 \\ 0 & 0 & ... & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & ... & 0 \end{pmatrix} $$ and may also be referred to as a null or empty matrix.

A zero matrix can be either square or rectangular, consisting of integers or real numbers, and it can have any number of rows and columns.

Example of a Zero Matrix

For instance, a 2x2 zero matrix has four elements, all set to zero:

$$ 0_{2x2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $$

Here are a few other examples of null matrices:

$$ 0_{2x3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $$

$$ 0_{3x2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} $$

$$ 0_{1x1} = \begin{pmatrix} 0 \end{pmatrix} $$

Properties of Null Matrices

1. Additive Identity

Null matrices act as the additive identity in matrix addition, meaning they leave the other matrix unchanged when added. The sum of any matrix \( M \) and a zero matrix of the same dimensions is simply \( M \):

$$ M + 0 = 0 + M = M $$

For example, consider the square matrix \( M \):

$$ M_{2x2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} $$

Adding \( M \) to a 2x2 zero matrix yields:

$$ M_{2x2} + 0_{2x2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1+0 & 2+0 \\ 3+0 & 4+0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} $$

2. Multiplicative Absorber

The zero matrix also serves as an absorbing element in matrix multiplication. When a matrix is multiplied by a zero matrix of compatible dimensions, the product is always a zero matrix:

$$ M \cdot 0 = 0 \cdot M = 0 $$

For instance, consider the following square matrix \( M \):

$$ M_{2x2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} $$

The product of \( M \) with a 2x2 zero matrix results in:

$$ M_{2x2} \cdot 0_{2x2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 0 + 2 \cdot 0 & 1 \cdot 0 + 2 \cdot 0 \\ 3 \cdot 0 + 4 \cdot 0 & 3 \cdot 0 + 4 \cdot 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $$

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Matrices (linear algebra)