Cosine of a matrix
The cosine of a matrix \( A \) can be defined through the Taylor series expansion of cosine, adapted for matrix operators: $$ \cos(A) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} A^{2k} $$
In practice, calculating the cosine of a matrix involves using this infinite series, where each term includes an even power of matrix \( A \) along with corresponding coefficients.
A practical example
Consider the matrix \( A \):
$$ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} $$
This matrix represents a rotation and is structured simply enough to allow straightforward calculations.
To find \( \cos(A) \), we’ll use the initial terms of the Taylor/MacLaurin series.
$$ \cos(A) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} A^{2k} $$
Expanding the series for \( \cos(A) \):
$$ \cos(A) = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \dots $$
To simplify, let’s calculate \( A^2 \) for this matrix:
$$ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I $$
where \( I \) is the identity matrix.
Note: The power of a matrix is found by multiplying matrix \( A \) by itself, not by squaring each individual element. To compute \( A^2 \), we perform the matrix multiplication \( A \cdot A \): $$ A^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} $$ $$ A^2 = \begin{pmatrix} 0 \cdot 0 + 1 \cdot (-1) & 0 \cdot 1 + 1 \cdot 0 \\ -1 \cdot 0 + 0 \cdot (-1) & -1 \cdot 1 + 0 \cdot 0 \end{pmatrix} $$ $$ A^2 = \begin{pmatrix} 0 - 1 & 0 + 0 \\ 0 + 0 & -1 + 0 \end{pmatrix} $$ The result is: $$ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} $$ This is equivalent to \(-I\), where \( I \) is the identity matrix. $$ A^2 = -1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -1 \cdot I $$ $$ A^2 = -I $$
Since \( A^2 = -I \), we can now compute \( A^4 \):
$$ A^4 = A^2 \cdot A^2 = (-I) \cdot (-I) = I $$
With these results, we can simplify the series for cosine:
$$ \cos(A) = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \dots $$
By substituting \( A^2 = -I \) and \( A^4 = I \):
$$ \cos(A) = I - \frac{-I}{2!} + \frac{I}{4!} - \dots $$
$$ \cos(A) = I \left(1 + \frac{1}{2!} - \frac{1}{4!} + \dots \right) $$
Adding up the first few terms, and observing the repeating pattern, gives a good approximation for \( \cos(A) \):
$$ \cos(A) \approx I \left(1 + \frac{1}{2!} - \frac{1}{4!} + \dots \right) $$
This approach converges quickly, provides a practical representation of \( \cos(A) \).
And so forth.