Cosine of a matrix

The cosine of a matrix \( A \) can be defined through the Taylor series expansion of cosine, adapted for matrix operators: $$ \cos(A) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} A^{2k} $$

In practice, calculating the cosine of a matrix involves using this infinite series, where each term includes an even power of matrix \( A \) along with corresponding coefficients.

A practical example

Consider the matrix \( A \):

$$ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} $$

This matrix represents a rotation and is structured simply enough to allow straightforward calculations.

To find \( \cos(A) \), we’ll use the initial terms of the Taylor/MacLaurin series.

$$ \cos(A) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} A^{2k} $$

Expanding the series for \( \cos(A) \):

$$ \cos(A) = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \dots $$

To simplify, let’s calculate \( A^2 \) for this matrix:

$$ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I $$

where \( I \) is the identity matrix.

Note: The power of a matrix is found by multiplying matrix \( A \) by itself, not by squaring each individual element. To compute \( A^2 \), we perform the matrix multiplication \( A \cdot A \): $$ A^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}  $$ $$ A^2 = \begin{pmatrix} 0 \cdot 0 + 1 \cdot (-1) & 0 \cdot 1 + 1 \cdot 0 \\ -1 \cdot 0 + 0 \cdot (-1) & -1 \cdot 1 + 0 \cdot 0 \end{pmatrix} $$ $$ A^2 = \begin{pmatrix} 0 - 1 & 0 + 0 \\ 0 + 0 & -1 + 0 \end{pmatrix}  $$ The result is: $$ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}  $$ This is equivalent to \(-I\), where \( I \) is the identity matrix. $$ A^2 = -1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -1 \cdot I $$ $$ A^2 = -I $$

Since \( A^2 = -I \), we can now compute \( A^4 \):

$$ A^4 = A^2 \cdot A^2 = (-I) \cdot (-I) = I $$

With these results, we can simplify the series for cosine:

$$ \cos(A) = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \dots  $$

By substituting \( A^2 = -I \) and \( A^4 = I \):

$$ \cos(A) = I - \frac{-I}{2!} + \frac{I}{4!} - \dots  $$

$$ \cos(A) = I \left(1 + \frac{1}{2!} - \frac{1}{4!} + \dots \right) $$

Adding up the first few terms, and observing the repeating pattern, gives a good approximation for \( \cos(A) \):

$$ \cos(A) \approx I \left(1 + \frac{1}{2!} - \frac{1}{4!} + \dots \right) $$

This approach converges quickly, provides a practical representation of \( \cos(A) \).

And so forth.

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Matrices (linear algebra)