Unimodular Matrices

A square matrix M of order m is called unimodular if all its entries are integers and its determinant is either +1 or -1: $$ \det(M) = \pm 1 $$

A Practical Example

Consider the following 2×2 matrix:

$$ \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} $$

This matrix is unimodular because its determinant is 1:

$$ \det \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = 3 \cdot 1 - 2 \cdot 1 = 1 $$

Example 2

Now consider this matrix:

$$ \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix} $$

This is also unimodular since its determinant equals −1:

$$ \det \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix} = 1 \cdot 2 - 1 \cdot 3 = -1 $$

Key Properties of Unimodular Matrices

Unimodular matrices have several important algebraic properties:

  • The product of two unimodular matrices is also unimodular.

    Example. Multiplying two unimodular matrices $$ \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 + 2 \cdot 3 & 3 \cdot 1 + 2 \cdot 2 \\ 1 \cdot 1 + 1 \cdot 3 & 1 \cdot 1 + 1 \cdot 2 \end{pmatrix} = \begin{pmatrix} 9 & 7 \\ 4 & 3 \end{pmatrix} $$ yields another unimodular matrix, since $$ \det \begin{pmatrix} 9 & 7 \\ 4 & 3 \end{pmatrix} = 9 \cdot 3 - 7 \cdot 4 = 27 - 28 = -1 $$

  • The inverse of a unimodular matrix is also unimodular.

    Example. The unimodular matrix $$ M = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} $$ is invertible, and its inverse is $$ M^{-1} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} $$ which is itself unimodular, since $$ \det M^{-1} = \det \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} = 1 \cdot 3 - (-2) \cdot (-1) = 3 - 2 = 1 $$

  • All identity matrices are unimodular.

    Example. The 2×2 identity matrix $$ I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$ is unimodular because $$ \det I_2 = \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 $$

And so on.

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Matrices (linear algebra)