Characteristic polynomial of a square matrix
The characteristic polynomial of a square matrix is defined as the determinant of the matrix \( M \) of order \( n \) minus \( \lambda \) times the identity matrix of the same order, denoted as \( Id_n \). It is expressed as: $$ p_M (\lambda) = \det(M - \lambda \cdot Id_n) $$
The characteristic polynomial of a matrix is an essential tool for finding its eigenvalues.
Example
Consider, for example, a 2x2 matrix \( M \):
$$ M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} $$
To determine the characteristic polynomial of this matrix, we substitute \( M \) and the 2x2 identity matrix \( Id_2 \) into the formula:
$$ p_M (\lambda) = \det(M - \lambda \cdot Id_2) $$
$$ p_M (\lambda) = \det \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} - \lambda \cdot Id_2 \right) $$
$$ p_M (\lambda) = \det \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) $$
After multiplying \( \lambda \) by the identity matrix, we get:
$$ p_M (\lambda) = \det \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) $$
$$ p_M (\lambda) = \det \begin{pmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{pmatrix} $$
Now, expanding the determinant yields:
$$ p_M (\lambda) = (1 - \lambda)(4 - \lambda) - (2 \cdot 3) $$
$$ p_M (\lambda) = 4 - 4 \lambda - \lambda + \lambda^2 - 6 $$
which simplifies to:
$$ p_M (\lambda) = \lambda^2 - 5\lambda + 2 $$
The characteristic polynomial for matrix \( M \) can now be used to find its eigenvalues.