Characteristic polynomial of a square matrix

The characteristic polynomial of a square matrix is defined as the determinant of the matrix \( M \) of order \( n \) minus \( \lambda \) times the identity matrix of the same order, denoted as \( Id_n \). It is expressed as: $$ p_M (\lambda) = \det(M - \lambda \cdot Id_n) $$

The characteristic polynomial of a matrix is an essential tool for finding its eigenvalues.

    Example

    Consider, for example, a 2x2 matrix \( M \):

    $$ M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} $$

    To determine the characteristic polynomial of this matrix, we substitute \( M \) and the 2x2 identity matrix \( Id_2 \) into the formula:

    $$ p_M (\lambda) = \det(M - \lambda \cdot Id_2) $$

    $$ p_M (\lambda) = \det \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} - \lambda \cdot Id_2 \right) $$

    $$ p_M (\lambda) = \det \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) $$

    After multiplying \( \lambda \) by the identity matrix, we get:

    $$ p_M (\lambda) = \det \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) $$

    $$ p_M (\lambda) = \det \begin{pmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{pmatrix} $$

    Now, expanding the determinant yields:

    $$ p_M (\lambda) = (1 - \lambda)(4 - \lambda) - (2 \cdot 3) $$

    $$ p_M (\lambda) = 4 - 4 \lambda - \lambda + \lambda^2 - 6 $$

    which simplifies to:

    $$ p_M (\lambda) = \lambda^2 - 5\lambda + 2 $$

    The characteristic polynomial for matrix \( M \) can now be used to find its eigenvalues.

     
     

    Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

    FacebookTwitterLinkedinLinkedin
    knowledge base

    Matrices (linear algebra)