Special Limits

Special limits are frequently encountered limits involving functions or sequences that are particularly useful for evaluating many other limits quickly and effectively.

Why memorize a special limit? Understanding the reasoning behind a special limit isn’t always straightforward - it often requires a formal proof. However, once you’ve memorized the result, it becomes a powerful shortcut for solving a wide range of limit problems efficiently.

List of Special Limits

Here’s a list of some of the most important special limits in calculus:

$$ \lim_{x \rightarrow \infty} \left(1+\frac{1}{x}\right)^x = e $$  
$$ \lim_{x \rightarrow \infty} \left(1+\frac{k}{x}\right)^x = e^k $$  
$$ \lim_{x \rightarrow 0} \frac{ \sin x }{x} = 1 $$  
$$ \lim_{x \rightarrow 0} \frac{ 1 - \cos x }{x^2} = \frac{1}{2} $$  
$$ \lim_{x \rightarrow 0} \frac{ 1 - \cos kx }{x^2} = \frac{k^2}{2} $$  
$$ \lim_{x \rightarrow 0} \frac{ \log(1+x) }{x} = 1 $$  
$$ \lim_{x \rightarrow \infty} a^x = \begin{cases} +\infty \quad \text{if } a > 1 \\ 1 \quad \text{if } a = 1 \\ 0 \quad \text{if } -1 < a < 1 \\ \text{does not exist} \quad \text{if } a \le -1 \\ \end{cases} $$ Proof
$$ \lim_{x \rightarrow \infty} \sqrt[x]{a} = 1 $$ Proof
$$ \lim_{x \rightarrow \infty} \sqrt[x]{x^b} = 1 $$  
$$ \lim_{x \rightarrow \infty} \left(1+\frac{(1+x)^c - 1}{x}\right)^x = c $$  
$$ \lim_{x \rightarrow 0} \frac{(1+x)^c - 1}{x} = c $$  
$$ \lim_{x \rightarrow 0} \frac{ \tan x }{x} = 1 $$  
$$ \lim_{x \rightarrow 0} \frac{ \arcsin x }{x} = 1 $$  
$$ \lim_{x \rightarrow 0} \frac{ \arctan x }{x} = 1 $$  
$$ \lim_{x \rightarrow 0} x \cdot \log x = 0 $$  
$$ \lim_{x \rightarrow 0} \frac{ \log_b{(1+x)} }{x} = \frac{1}{ \log b } $$  
$$ \lim_{x \rightarrow 0} \frac{ e^x - 1 }{ x } = 1 $$  
$$ \lim_{x \rightarrow 0} \frac{ a^x - 1 }{ x } = \log a $$  

 

 
 

Please feel free to point out any errors or typos, or share suggestions to improve these notes. English isn't my first language, so if you notice any mistakes, let me know, and I'll be sure to fix them.

FacebookTwitterLinkedinLinkedin
knowledge base

Limits

Limits of Sequences

Limits of Functions

Limits of Functions of Two Variables

Exercises