Evaluating Indeterminate Limits Using Taylor Series
In certain cases, the Taylor series provides an effective technique for resolving indeterminate limits.
A Worked Example
Consider the following limit, which exhibits an indeterminate form of type ∞ - ∞:
$$ \lim_{x \rightarrow 0} \left( \frac{1}{x^2} - \frac{1}{x \sin x} \right) = \infty - \infty $$
To tackle this expression, we approximate the sine function using its first-order Taylor expansion centered at \( x = 0 \):
$$ \sin x = x - \frac{x^3}{6} + o(x^4) $$
Before substitution, we rewrite the expression as a single rational function to simplify manipulation:
$$ \frac{1}{x^2} - \frac{1}{x \sin x} = \frac{x \sin x - x^2}{x^3 \sin x} = \frac{\sin x - x}{x^2 \sin x} $$
Now substitute the Taylor approximation:
$$ \frac{ \left( x - \frac{x^3}{6} + o(x^4) \right) - x }{ x^2 \left( x - \frac{x^3}{6} + o(x^4) \right) } = \frac{ -\frac{x^3}{6} + o(x^4) }{ x^3 - \frac{x^5}{6} + o(x^6) } $$
We now simplify by dividing numerator and denominator by \( x^3 \):
$$ \frac{ -\frac{1}{6} + \frac{o(x^4)}{x^3} }{ 1 - \frac{x^2}{6} + \frac{o(x^6)}{x^3} } $$
Taking the limit as \( x \to 0 \):
$$ \lim_{x \rightarrow 0} \frac{ -\frac{1}{6} + \frac{o(x^4)}{x^3} }{ 1 - \frac{x^2}{6} + \frac{o(x^6)}{x^3} } $$
We split the expression into the ratio of two limits:
$$ \frac{ \lim_{x \to 0} \left( -\frac{1}{6} + \frac{o(x^4)}{x^3} \right) }{ \lim_{x \to 0} \left( 1 - \frac{x^2}{6} + \frac{o(x^6)}{x^3} \right) } $$
Constants can be pulled out of the limits:
$$ \frac{ -\frac{1}{6} + \lim_{x \to 0} \frac{o(x^4)}{x^3} }{ 1 - \lim_{x \to 0} \frac{x^2}{6} + \lim_{x \to 0} \frac{o(x^6)}{x^3} } $$
Since \( \lim_{x \to 0} \frac{x^2}{6} = 0 \), we simplify the denominator:
$$ \frac{ -\frac{1}{6} + \lim_{x \to 0} \frac{o(x^4)}{x^3} }{ 1 + \lim_{x \to 0} \frac{o(x^6)}{x^3} } $$
To evaluate the little‑o terms, we factor out powers of \( x \):
$$ \frac{ -\frac{1}{6} + \lim_{x \to 0} \left( x \cdot \frac{o(x^4)}{x^4} \right) }{ 1 + x^3 \cdot \lim_{x \to 0} \frac{o(x^6)}{x^6} } $$
Since \( o(x^4) \) is a higher-order infinitesimal than \( x^4 \), the term \( \frac{o(x^4)}{x^4} \to 0 \) as \( x \to 0 \). Likewise, \( \frac{o(x^6)}{x^6} \to 0 \):
$$ \frac{ -\frac{1}{6} + 0 }{ 1 + 0 } = -\frac{1}{6} $$
Therefore, the value of the limit is:
$$ \boxed{ -\frac{1}{6} } $$
This result shows how Taylor expansions can simplify and resolve seemingly intractable indeterminate forms.
And so on.
